Abstract

Summary

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

Competing Interest Statement

GRS sits on the GSK Vaccines Scientific Advisory Board. Oxford University holds intellectual property related to the Oxford-AstraZeneca vaccine. AJP is Chair of UK Dept. Health and Social Care (DHSC) Joint Committee on Vaccination & Immunisation (JCVI) but does not participate in the JCVI COVID19 committee, and is a member of the WHO SAGE. The views expressed in this article do not necessarily represent the views of DHSC, JCVI, or WHO. The University of Oxford has entered into a partnership with AstraZeneca on coronavirus vaccine development. The University of Oxford has protected intellectual property disclosed in this publication.

Footnotes

* Addition of authors accidentally omitted from earlier version.

Details

Title
Antibody evasion by the Brazilian P.1 strain of SARS-CoV-2
Author
Dejnirattisai, Wanwisa; Zhou, Daming; Supasa, Piyada; Liu, Chang; Mentzer, Alexander J; Ginn, Helen M; Zhao, Yuguang; Duyvesteyn, Helen Me; Tuekprakhon, Aekkachai; Nutalai, Rungtiwa; Wang, Beibei; Paesen, Guido C; López-Camacho, César; Slon-Campos, Jose; Walter, Thomas S; Skelly, Donal; Costa Clemens, Sue Ann; Felipe Gomes Naveca; Nascimento, Valdinete; Nascimento, Fernanda; Cristiano Fernandes Da Costa; Resende, Paola C; Pauvolid-Correa, Alex; Siqueira, Marilda M; Dold, Christina; Levin, Robert; Dong, Tao; Pollard, Andrew J; Knight, Julian C; Crook, Derrick; Lambe, Teresa; Clutterbuck, Elizabeth; Sagida Bibi; Flaxman, Amy; Bittaye, Mustapha; Belij-Rammerstorfer, Sandra; Gilbert, Sarah; Carroll, Miles W; Klenerman, Paul; Barnes, Eleanor; Dunachie, Susanna J; Paterson, Neil G; Williams, Mark A; Hall, David R; Hulswit, Ruben J G; Bowden, Thomas A; Fry, Elizabeth E; Mongkolsapaya, Juthathip; Ren, Jingshan; Stuart, David I; Screaton, Gavin R
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2021
Publication date
Mar 19, 2021
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2504875623
Copyright
© 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.