It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Summary
How T cell receptor (TCR) signal strength modulates T cell function and to what extent this is modified by immune checkpoint blockade (ICB) are key questions in immunology. Using Nr4a3-Tocky mice as a digital read-out of NFAT pathway activity, we identify the rapid quantitative and qualitative changes that occur in CD4+ T cells in response to a range of TCR signalling strengths. We demonstrate that the time and dose dependent programming of distinct co-inhibitory receptors rapidly re-calibrates T cell activation thresholds. By developing a new in vivo model, we analyse the immediate effects of ICB on T cell re-activation. Our findings reveal that anti-PD1 but not anti-Lag3 immunotherapy leads to an increased TCR signal strength. We define a strong TCR signal metric of five genes specifically upregulated by anti-PD1 in T cells (TCR.strong), which can stratify clinical outcomes during anti-PD1 monotherapy in melanoma patients. Our study therefore reveals how analysis of TCR signal strength – and its manipulation – can provide powerful metrics for monitoring outcomes to immunotherapy.
Key Points
* TCR signal strength-dependent programming of CD4+ T cells revealed over time in vivo
* Inhibitory receptor expression is dynamic, TCR signal strength dependent, and rapidly re-calibrates T cell activation thresholds
* PD1 but not Lag3 blockade leads to a unique and increased TCR signal strength signature (coined TCR.strong)
* TCR.strong metric stratifies melanoma patient survival in response to Nivolumab (anti-PD1) therapy
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer