Abstract

Exciton-polaritons are hybrid light-matter states resulting from strong exciton-photon coupling. The wave function of the polariton is a mixture of light and matter, enabling long-range energy transfer between spatially separated chromophores. Moreover, their delocalized nature, inherited from the photon component, has been predicted to enhance exciton transport. Here, we strongly couple an organic heterojunction consisting of energy/electron donor and acceptor materials to the same cavity mode. Using time-resolved spectroscopy and optoelectrical characterization, we show that the rate of exciton harvesting is enhanced with one order of magnitude and the rate of energy transfer in the system is increased two- to threefold in the strong coupling regime. Our results exemplify two means of efficiently channeling excitation energy to a heterojunction interface, where charge separation can occur. This study opens a new door to increase the overall efficiency of light harvesting systems using the tool of strong light-matter interactions.

Exploiting delocalized organic polaritons for enhanced exciton harvesting has been advantageous for organic optoelectronic with planar heterojunctions. Here, the authors report polariton-assisted excitation energy channeling in organic heterojunctions coupled to the same cavity mode.

Details

Title
Polariton-assisted excitation energy channeling in organic heterojunctions
Author
Wang, Mao 1   VIAFID ORCID Logo  ; Hertzog, Manuel 1   VIAFID ORCID Logo  ; Börjesson, Karl 1   VIAFID ORCID Logo 

 University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden (GRID:grid.8761.8) (ISNI:0000 0000 9919 9582) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2505252492
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.