Abstract

Gene expression signatures have been used to predict the outcome of chemotherapy for breast cancer. The nucleosome footprint of cell-free DNA (cfDNA) carries gene expression information of the original tissues and thus may be used to predict the response to chemotherapy. Here we carried out the nucleosome positioning on cfDNA from 85 breast cancer patients and 85 healthy individuals and two cancer cell lines T-47D and MDA-MB-231 using low-coverage whole-genome sequencing (LCWGS) method. The patients showed distinct nucleosome footprints at Transcription Start Sites (TSSs) compared with normal donors. In order to identify the footprints of cfDNA corresponding with the responses to neoadjuvant chemotherapy in patients, we mapped on nucleosome positions on cfDNA of patients with different responses: responders (pretreatment, n = 28; post-1 cycle, post-3/4 cycles, and post-8 cycles of treatment, n = 12) and nonresponders (pretreatment, n = 10; post-1 cycle, post-3/4 cycles, and post-8 cycles of treatment, n = 10). The coverage depth near TSSs in plasma cfDNA differed significantly between responders and nonresponders at pretreatment, and also after neoadjuvant chemotherapy treatment cycles. We identified 232 TSSs with differential footprints at pretreatment and 321 after treatment and found enrichment in Gene Ontology terms such as cell growth inhibition, tumor suppressor, necrotic cell death, acute inflammatory response, T cell receptor signaling pathway, and positive regulation of vascular endothelial growth factor production. These results suggest that cfDNA nucleosome footprints may be used to predict the efficacy of neoadjuvant chemotherapy for breast cancer patients and thus may provide help in decision making for individual patients.

Details

Title
Association between the nucleosome footprint of plasma DNA and neoadjuvant chemotherapy response for breast cancer
Author
Xu, Yang 1   VIAFID ORCID Logo  ; Geng-Xi, Cai 2   VIAFID ORCID Logo  ; Bo-Wei, Han 3 ; Zhi-Wei, Guo 3 ; Ying-Song, Wu 3 ; Lyu Xiaoming 4   VIAFID ORCID Logo  ; Li-Min, Huang 3 ; Yuan-Bin, Zhang 5 ; Li, Xin 1   VIAFID ORCID Logo  ; Guo-Lin, Ye 6   VIAFID ORCID Logo  ; Xue-Xi, Yang 3   VIAFID ORCID Logo 

 Southern Medical University, Clinical Innovation and Research Center, Shenzhen Hospital, Shenzhen, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471); Southern Medical University, The Third School of Clinical Medicine, Guangzhou, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471) 
 The First People’s Hospital of Foshan, Department of Breast Surgery, Foshan, China (GRID:grid.452881.2) (ISNI:0000 0004 0604 5998); Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China (GRID:grid.12981.33) (ISNI:0000 0001 2360 039X) 
 Southern Medical University, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Guangzhou, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471) 
 Southern Medical University, Department of Laboratory Medicine, The Third Affiliated Hospital, Guangzhou, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471) 
 Southern Medical University, Clinical Innovation and Research Center, Shenzhen Hospital, Shenzhen, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471) 
 The First People’s Hospital of Foshan, Department of Breast Surgery, Foshan, China (GRID:grid.452881.2) (ISNI:0000 0004 0604 5998) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
23744677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2505578617
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.