It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ABSTRACT
We propose RgCop, a novel regularized copula based method for gene selection from large single cell RNA-seq data. RgCop utilizes copula correlation (Ccor), a robust equitable dependence measure that captures multivariate dependency among a set of genes in single cell expression data. We raise an objective function by adding a l1 regularization term with Ccor to penalizes the redundant co-efficient of features/genes, resulting non-redundant effective features/genes set. Results show a significant improvement in the clustering/classification performance of real life scRNA-seq data over the other state-of-the-art. RgCop performs extremely well in capturing dependence among the features of noisy data due to the scale invariant property of copula, thereby improving the stability of the method. Moreover, the differentially expressed (DE) genes identified from the clusters of scRNA-seq data are found to provide an accurate annotation of cells. Finally, the features/genes obtained from RgCop can able to annotate the unknown cells with high accuracy.
The corresponding software is available in: https://github.com/Snehalikalall/RgCop
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer