Full Text

Turn on search term navigation

Copyright © 2021 Tadesse Walelign et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper presents a mathematical model analysis of heat and mass transfer in a two-dimensional flow of electrically conducting, thermally radiative, and chemically reactive Maxwell nanofluid towards a vertical stretching and permeable sheet embedded in a porous medium. Boundary layer approximation and suitable transformations are used to reduce the governing differential equations convenient for computation. Eventually, the transformed nonlinear differential equations along with the corresponding boundary conditions are solved in the framework of optimal homotopy analysis method. The effects of induced magnetic field, buoyancy force, viscous dissipation, heat source, Joule heating, and convective boundary condition are analyzed in detail. The rates of heat, mass, and momentum transfer with respect to the relevant parameters are also examined in terms of the local Nusselt number, Sherwood number, and skin friction coefficients, respectively. Among the many results of the study, it is shown that the induced magnetic field, flow velocity, and temperature profiles are increasing functions of the Maxwell parameter. The results of the present study are also in a close agreement with previously published results under common assumptions.

Details

Title
Heat and Mass Transfer in Stagnation Point Flow of Maxwell Nanofluid Towards a Vertical Stretching Sheet with Effect of Induced Magnetic Field
Author
Tadesse Walelign 1   VIAFID ORCID Logo  ; Haile, Eshetu 1   VIAFID ORCID Logo  ; Kebede, Tesfaye 1 ; Awgichew, Gurju 1 

 Department of Mathematics, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia 
Editor
Luigi Rodino
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2506107831
Copyright
Copyright © 2021 Tadesse Walelign et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/