It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Orientation of nanoscale objects can be measured by examining the polarized emission of optical probes. To retrieve a three-dimensional (3D) orientation, it has been essential to observe the probe (a dipole) along multiple viewing angles and scan with a rotating analyzer. However, this method requires a sophisticated optical setup and is subject to various external sources of error. Here, we present a fundamentally different approach employing coupled multiple emission dipoles that are inherent in lanthanide-doped phosphors. Simultaneous observation of different dipoles and comparison of their relative intensities allow to determine the 3D orientation from a single viewing angle. Moreover, the distinct natures of electric and magnetic dipoles originating in lanthanide luminescence enable an instant orientation analysis with a single-shot emission spectrum. We demonstrate a straightforward orientation analysis of Eu3+-doped NaYF4 nanocrystals using a conventional fluorescence microscope. Direct imaging of the rod-shaped nanocrystals proved the high accuracy of the measurement. This methodology would provide insights into the mechanical behaviors of various nano- and biomolecular systems.
Determining the orientation of nanoscale objects in three-dimensional space has typically required complicated optical setups. Here, the authors develop a simple method to retrieve the 3D orientation of luminescent, lanthanide-doped nanorods from a single-shot emission spectrum.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Institut Polytechnique de Paris, Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Palaiseau, France (GRID:grid.10877.39) (ISNI:0000000121581279)
2 Université Bourgogne Franche-Comté, 9 Avenue Savary, BP 47870, Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Dijon, France (GRID:grid.493090.7) (ISNI:0000 0004 4910 6615)