Abstract

Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry–Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

Systems that help to enable nanophotonics in the terahertz region are in demand for developing technologies. The authors introduce and study the photonic properties of tin oxide nanobelts as such a platform, supporting phonon polaritons in the far-IR range.

Details

Title
Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide
Author
Feres, Flávio H 1   VIAFID ORCID Logo  ; Mayer, Rafael A 1 ; Wehmeier Lukas 2   VIAFID ORCID Logo  ; Maia Francisco C B 3   VIAFID ORCID Logo  ; Viana, E R 4 ; Malachias Angelo 5 ; Bechtel, Hans A 6 ; Michael, Klopf J 7 ; Eng, Lukas M 2   VIAFID ORCID Logo  ; Kehr, Susanne C 8 ; González, J C 5 ; Freitas, Raul O 3   VIAFID ORCID Logo  ; Barcelos, Ingrid D 3   VIAFID ORCID Logo 

 Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil (GRID:grid.452567.7) (ISNI:0000 0004 0445 0877); University of Campinas (Unicamp), Physics Department, Gleb Wataghin Physics Institute, Campinas, Brazil (GRID:grid.411087.b) (ISNI:0000 0001 0723 2494) 
 Technische Universität Dresden, Institute of Applied Physics, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Technische Universität Dresden, ct.qmat, Dresden-Würzburg Cluster of Excellence-EXC 2147, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil (GRID:grid.452567.7) (ISNI:0000 0004 0445 0877) 
 Universidade Tecnológica Federal do Paraná (UTFPR), Department of Physics, Curitiba, Brazil (GRID:grid.474682.b) (ISNI:0000 0001 0292 0044) 
 Universidade Federal de Minas Gerais (UFMG), Department of Physics, Belo Horizonte, Brazil (GRID:grid.8430.f) (ISNI:0000 0001 2181 4888) 
 Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 Technische Universität Dresden, Institute of Applied Physics, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2507356919
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.