It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In networking, one major difficulty that nodes suffer from is the need for their addresses to be generated and verified without relying on a third party or public authorized servers. To resolve this issue, the use of self-certifying addresses have become a highly popular and standardized method, of which Cryptographically Generated Addresses (CGA) is a prime example. CGA was primarily designed to deter the theft of IPv6 addresses by binding the generated address to a public key to prove address ownership. Even though the CGA technique is highly effective, this method is still subject to several vulnerabilities with respect to security, in addition to certain limitations in its performance. In this study, the authors present an intensive systematic review of the literature to explore the technical specifications of CGA, its challenges, and existing proposals to enhance the protocol. Given that CGA generation is a time-consuming process, this limitation has hampered the application of CGA in mobile environments where nodes have limited energy and storage. Fulfilling Hash2 conditions in CGA is the heaviest and most time-consuming part of SEND. To improve the performance of CGA, we replaced the Secure Hash Algorithm (SHA1) with the Message Digest (MD5) hash function. Furthermore, this study also analyzes the possible methods through which a CGA could be attacked. In conducting this analysis, Denial-of-Service (DoS) attacks were identified as the main method of attack toward the CGA verification process, which compromise and threaten the privacy of CGA. Therefore, we propose some modifications to the CGA standard verification algorithm to mitigate DoS attacks and to make CGA more security conscious.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer