It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a pandemic with growing global mortality. There is an urgent need to understand the molecular pathways required for host infection and anti-viral immunity. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with viral ChIRP-MS data from three other positive-sense RNA viruses defined pan-viral and SARS-CoV-2-specific host interactions. Functional interrogation of these factors with a genome-wide CRISPR screen revealed that the vast majority of viral RNA-binding proteins protect the host from virus-induced cell death, and we identified known and novel anti-viral proteins that regulate SARS-CoV-2 pathogenicity. Finally, our RNA-centric approach demonstrated a physical connection between SARS-CoV-2 RNA and host mitochondria, which we validated with functional and electron microscopy data, providing new insights into a more general virus-specific protein logic for mitochondrial interactions. Altogether, these data provide a comprehensive catalogue of SARS-CoV-2 RNA-host protein interactions, which may inform future studies to understand the mechanisms of viral pathogenesis, as well as nominate host pathways that could be targeted for therapeutic benefit.
Highlights
* · ChIRP-MS of SARS-CoV-2 RNA identifies a comprehensive viral RNA-host protein interaction network during infection across two species
* · Comparison to RNA-protein interaction networks with Zika virus, dengue virus, and rhinovirus identify SARS-CoV-2-specific and pan-viral RNA protein complexes and highlights distinct intracellular trafficking pathways
* · Intersection of ChIRP-MS and genome-wide CRISPR screens identify novel SARS-CoV-2-binding proteins with pro- and anti-viral function
* · Viral RNA-RNA and RNA-protein interactions reveal specific SARS-CoV-2-mediated mitochondrial dysfunction during infection
Competing Interest Statement
K.R.P., H.Y.C., and A.T.S. are co-founders of Cartography Biosciences. A.T.S. is a co-founder of Immunai and receives research funding from Arsenal Biosciences, Sonoma Biotherapeutics, and Allogene Therapeutics. H.Y.C. is a co-founder of Accent Therapeutics, Boundless Bio, and an advisor for 10x Genomics, Arsenal Biosciences, and Spring Discovery. Yale University (C.B.W.) has a patent pending related to this work entitled: Compounds and Compositions for Treating, Ameliorating, and/or Preventing SARS-CoV-2 Infection and/or Complications Thereof. Yale University has committed to rapidly executable non-exclusive royalty-free licenses to intellectual property rights for the purpose of making and distributing products to prevent, diagnose and treat COVID-19 infection during the pandemic and for a short period thereafter.
Footnotes
* Lead Contact: raflynn{at}stanford.edu
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer