It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Most models of complex trait genetic architecture assume that signed causal effect sizes of each SNP (defined with respect to the minor allele) are uncorrelated with those of nearby SNPs, but it is currently unknown whether this is the case. We develop a new method, autocorrelation LD regression (ACLR), for estimating the genome-wide autocorrelation of causal minor allele effect sizes as a function of genomic distance. Our method estimates these autocorrelations by regressing the products of summary statistics on distance-dependent LD scores. We determined that ACLR robustly assesses the presence or absence of nonzero autocorrelation, producing unbiased estimates with well-calibrated standard errors in null simulations regardless of genetic architecture; if true autocorrelation is nonzero, ACLR correctly detects its sign, although estimates of the autocorrelation magnitude are susceptible to bias in cases of certain genetic architectures. We applied ACLR to 31 diseases and complex traits from the UK Biobank (average N=331K), meta-analyzing results across traits. We determined that autocorrelations were significantly negative at distances of 1-50bp (P = 8 × 10−6, point estimate −0.35 ±0.08) and 50-100bp (P = 2 × 10−3, point estimate −0.33 ± 0.11). We show that the autocorrelation is primarily driven by pairs of SNPs in positive LD, which is consistent with the expectation that linked SNPs with opposite effects are less impacted by natural selection. Our findings suggest that this mechanism broadly affects complex trait genetic architectures, and we discuss implications for association mapping, heritability estimation, and genetic risk prediction.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer