Full text

Turn on search term navigation

Copyright © 2021 Lan Ha Thi Le et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Investigation in radioactive contaminant removal from aqueous solutions has been considered essential upon unexpected nuclear accidents. In this report, we have successfully prepared Prussian blue analogues (PBAs) with different substituted cations (A2[Fe(CN)6] (A: Cu2+, Co2+, and Ni2+)). The synthesized PBAs were characterized and employed for the removal of Cs+, Sr2+, and Co2+ as sorption models, which are commonly found in radioactive waste. Sorption examinations reveal that Cu2[Fe(CN)6] has the highest sorption capacity towards Cs+, Sr2+, and Co2+ compared with those of Co2[Fe(CN)6] and Ni2[Fe(CN)6]. This is mainly attributed to the cation-exchange ability of substituted metal within the framework of PBAs. The sorption mechanism is qualitatively and quantitatively supported by infrared spectroscopy (IR) and total reflection X-ray fluorescence spectroscopy analysis (TXRF). In addition, it was found that Cs+ is adsorbed most effectively by PBAs due to the size matching between Cs+ ions and the channel windows of PBAs. These findings are important for the design of sorbents with suitable ion-exchange capacity and selectivity toward targeted radioactive wastes.

Details

Title
Prussian Blue Analogues of A2[Fe(CN)6] (A: Cu2+, Co2+, and Ni2+) and Their Composition-Dependent Sorption Performances towards Cs+, Sr2+, and Co2+
Author
Lan Ha Thi Le 1 ; Son An Nguyen 2   VIAFID ORCID Logo  ; Trung Dinh Nguyen 2 ; Van Cam Thi Le 3 ; Hai Van Cao 2 ; Ngoc Bao Nguyen 2 ; Thao Phuong Thi Le 2 

 Tran Phu High School, Da Lat, Vietnam; Department of Physics and Nuclear Engineering, Dalat University, Da Lat, Vietnam 
 Department of Physics and Nuclear Engineering, Dalat University, Da Lat, Vietnam 
 Department of Environmental Sciences and Engineering, Hallym University, Chuncheon, Republic of Korea 
Editor
Duong Tuan Quang
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2508265898
Copyright
Copyright © 2021 Lan Ha Thi Le et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/