Abstract

The electronic structure, in particular the band edge position, of photocatalyst in presence of water is critical for photocatalytic water splitting. We propose a direct and systematic density functional theory (DFT) scheme to quantitatively predict band edge shifts and their microscopic origins for aqueous 2D photocatalyst, where thousands of atoms or more are able to be involved. This scheme is indispensable to correctly calculate the electronic structure of 2D photocatalyst in the presence of water, which is demonstrated in aqueous MoS2, GaS, InSe, GaSe and InS. It is found that the band edge of 2D photocatalysts are not rigidly shifted due to water as reported in previous studies of aqueous systems. Specifically, the CBM shift is quantitatively explained by geometric deformation, water dipole and charge redistribution effect while the fourth effect, i.e., interfacial chemical contact, is revealed in the VBM shift. Moreover, the revealed upshift of CBM in aqueous MoS2 should thermodynamically help carriers to participate in hydrogen evolution reaction (HER), which underpin the reported experimental findings that MoS2 is an efficient HER photocatalyst. Our work paves the way to design 2D materials in general as low-cost and high-efficiency photocatalysts.

Details

Title
Electronic structure of aqueous two-dimensional photocatalyst
Author
Kang, Dawei 1   VIAFID ORCID Logo  ; Kong Xianghua 2   VIAFID ORCID Logo  ; Michaud-Rioux, Vincent 3 ; Chen, Ying-Chih 3 ; Zetian, Mi 4   VIAFID ORCID Logo  ; Guo, Hong 2 

 Henan University of Science and Technology, School of Physics and Engineering, Luoyang, China (GRID:grid.453074.1) (ISNI:0000 0000 9797 0900); Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen, China (GRID:grid.263488.3) (ISNI:0000 0001 0472 9649) 
 Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen, China (GRID:grid.263488.3) (ISNI:0000 0001 0472 9649); McGill University, Department of Physics, Montreal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649) 
 McGill University, Department of Physics, Montreal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649) 
 University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2509109711
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.