It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A tight-binding (TB) Hamiltonian is derived for strained silicene from a multi-orbital basis. The derivation is based on the Slater–Koster coupling parameters between different orbitals across the silicene lattice and takes into account arbitrary distortion of the lattice under strain, as well as the first and second-order spin–orbit interactions (SOI). The breaking of the lattice symmetry reveals additional SOI terms which were previously neglected. As an exemplary application, we apply the linearized low-energy TB Hamiltonian to model the current-induced spin accumulation in strained silicene coupled to an in-plane magnetization. The interplay between symmetry-breaking and the additional SOI terms induces an out-of-plane spin accumulation. This spin accumulation remains unbalanced after summing over the Fermi surfaces of the occupied bands and the two valleys, and can thus be utilized for spin torque switching.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431)