Abstract

Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year−1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year−1) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.

Details

Title
North American boreal forests are a large carbon source due to wildfires from 1986 to 2016
Author
Zhao Bailu 1 ; Zhuang Qianlai 2 ; Narasinha, Shurpali 3 ; Köster Kajar 4 ; Berninger, Frank 5 ; Pumpanen Jukka 6 

 Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
 Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Department of Agronomy, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
 Production Systems - Milk Production Unit, Natural Resources Institute Finland (Luke), Maaninka, Finland (GRID:grid.22642.30) (ISNI:0000 0004 4668 6757) 
 University of Helsinki, Department of Forest Sciences, Helsinki, Finland (GRID:grid.7737.4) (ISNI:0000 0004 0410 2071) 
 University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland (GRID:grid.9668.1) (ISNI:0000 0001 0726 2490) 
 University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland (GRID:grid.9668.1) (ISNI:0000 0001 0726 2490) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2509903433
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.