It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A plant’s ability to maximize seed germination, growth, and photosynthetic productivity depends on its aptitude to sense, evaluate, and respond to the quality, quantity, and direction of the light. Among diverse colors of light possessing different wavelengths and red light shown to have a high impact on the photosynthetic and growth responses of the plants. The use of artificial light sources where the quality, intensity, and duration of exposure can be controlled would be an efficient method to increase the efficiency of the crop plants. The coherent, collimated, and monochromatic properties of laser light sources enabled as biostimulator compared to the normal light. The present study was attempted to use the potential role of the He–Ne laser as a bio-stimulator device to improve the germination and growth of brinjal and to investigate the possible interactions of plant and laser photons. A substantial enhancement was observed in germination index, germination time and seed vigor index of laser-irradiated than control groups. The enhanced germination rate was correlated with higher GA content and its biosynthetic genes whereas decreased ABA content and its catabolic genes and GA/ABA ratio were noted in laser-irradiated groups during seed germination than control groups. Further the expression of phytochrome gene transcripts, PhyA and PhyB1 were upregulated in laser-irradiated seedlings which correlate with enhanced seed germination than control. Elevated levels of primary metabolites were noted in the early stages of germination whereas modulation of secondary metabolites was observed in later growth. Consequently, significantly increased photosynthetic rate, stomatal conductance, and transpiration rate was perceived in laser-irradiated seedlings compare with control. The current study showed hormone and phytochrome-mediated mechanisms of seed germination in laser-irradiated groups along with the enhanced photosynthetic rate, primary and secondary metabolites.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Manipal Academy of Higher Education, Department of Plant Sciences, Manipal School of Life Sciences, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193)
2 Manipal Academy of Higher Education, Department of Ageing Research, Manipal School of Life Sciences, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193)
3 Manipal Academy of Higher Education, Department of Biophysics, Manipal School of Life Sciences, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193)