It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Our aim was to measure the impact of two cycles of standard chemotherapy on tumoural neoangiogenesis by [18F] fluorine arginine-glycine-aspartic (RGD-K5) positron emission tomography–computed tomography (PET) on patients presenting with lymphoma. Nineteen patients at Rouen’s Henri Becquerel Cancer Centre were prospectively included. Fluorodeoxyglucose (FDG) and RGD-K5 PET were performed before (C0) and after (C2) two cycles of chemotherapy. End-of-treatment FDG PET was performed for final evaluation. Maximum standardised uptake value (SUVmax), SUVmean, Metabolic Tumour Volume (MTV) and Angiogenic Tumour Volume (ATV) were measured for all lesions. RGD SUVmax and SUVmean were also analysed in 13 normal organs at C0 and C2. The patient’s treatment response was considered using the Deauville score (DS) at the end of FDG PET treatment (DS 1–3 were considered responders, and 4 and 5 non-responders).
Results
Eighteen patients had both C0 FDG and RGD PET. Twelve patients had both C2 FDG and RGD, completed the treatment protocol and were included in end-of-treatment analysis. No statistical difference was found in RGD uptake of normal organs before and after chemotherapy for SUVmax and SUVmean. On C0 RGD, apart from classical Hodgkin lymphoma (cHL; n = 5) and grey zone lymphoma (GZL; n = 1), other lymphoma sub-types (n = 12) had low RGD uptake (p < 0.001). Regarding FDG, there was no significant difference for SUVmax, SUVmean and MTV at C0 and C2 between patients with cHL and non-Hodgkin lymphoma (NHL). At C2 RGD, non-responders had higher SUVmax and SUVmean compared to responders (p < 0.001). There was no significant difference in RGD ATV between responders and non-responders.
Conclusions
Our study showed significant higher initial RGD uptake in patients presenting with cHL and GZL compared to NHL. Non-responder also had higher post-chemotherapy RGD uptake compared to responders. Issues raised by RGD uptake, particularly in cHL, are yet to be explored and need to be confirmed in a larger population.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Rouen University Hospital & QuantIF-LITIS, University of Rouen, Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France (GRID:grid.10400.35) (ISNI:0000 0001 2108 3034)
2 Rouen University Hospital & QuantIF-LITIS, University of Rouen, Inserm U1245 and Department of Hematology, Henri Becquerel Cancer Center, Rouen, France (GRID:grid.10400.35) (ISNI:0000 0001 2108 3034)
3 Rouen University Hospital & QuantIF-LITIS, University of Rouen, Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France (GRID:grid.10400.35) (ISNI:0000 0001 2108 3034); Rouen University Hospital & QuantIF-LITIS, University of Rouen, Depatment of Radiotherapy Henri Becquerel Cancer Center, Rouen, France (GRID:grid.10400.35) (ISNI:0000 0001 2108 3034)