It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Graphene oxide (GO) has attracted much attention in anticorrosive coating applications due to its excellent mechanical properties, thermochemical stability and large specific surface area. In this paper, aniline trimer modified GO composites (ATGO) were prepared through modifying GO at different temperatures of 65 °C, 80 °C, 95 °C, and 110 °C, respectively. Aniline trimer modified GO composite coatings (ATGO/EP) were then prepared by adding different quantities of ATGO to epoxy coating, with the mass fractions of 0.05%, 0.1% and 0.3%, respectively. The resulting composite coatings were then sprayed onto Q235 steel plates for characterization and anticorrosion testing. A series of characterization methods such as x-ray diffraction (XRD), Raman spectra, Fourier transform infrared spectroscopy (FT-IR), Atomic force microscopy (AFM) and Transmission electron microscopy (TEM) were used to prove that aniline trimer was successfully grafted on GO. The optimal reaction temperature for ATGO preparation was determined to be 95 °C. Using anticorrosive tests such as Electrochemical impedance spectroscopy (EIS), salt spray test and adhesion test, it was proven that the addition of ATGO can significantly promote anticorrosion performance of epoxy resin (E-44). The optimal addition amount of ATGO to prepare composite coatings was determined to be 0.05 wt%. Its coating resistance after soaking in 3.5% NaCl solution for 10 days was 6.87 נ106 Ω, which was two orders of magnitude higher than the 3.89 נ104 Ω of pure epoxy coating. The importance and originality of this study is that it explores an effective way to improve the anticorrosion performance of epoxy coatings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, People’s Republic of China; School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai 519070, People’s Republic of China
2 School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People’s Republic of China
3 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, People’s Republic of China
4 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, People’s Republic of China; Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, Hohhot 010051, People’s Republic of China