Abstract

Groundwater resources are abundant on the middle and lower reaches of the Yellow River. However, due to the flat terrain and slow underground runoff, the water quality of groundwater intake wells is gradually deteriorating as a result of the deposition of pollutants, conventional allocation methods can’t meet the groundwater intake demand. In response to this problem, firstly, based on the investigation and study of groundwater intake rules and water quality characteristics on both sides of the Yellow River mainstream, the micro-hydraulic simulation model of the groundwater intake and allocation system is established. Secondly, Fourier Curve is used to fit and predict the characteristic pollutants for each well, then the water quality model of the groundwater allocation system is established combined with the dynamic equation. Finally, the combination model based on pollutants control of groundwater allocation system is constructed with three objectives, which are water quality optimization, safety optimization and energy consumption optimization. The model is solved by APGA algorithm and the corresponding calculation program is compiled with Visual Studio 2019. Through the application in a city on the middle and lower reaches of the Yellow River, the advantages of the model in pollutants control and energy consumption reduction are verified, meanwhile, a scientific and practical optimization technology for groundwater intake and allocation system is provided.

Details

Title
Study on Multi-objective Combination Model Based on Pollutants Control of Groundwater Allocation System
Author
Shen, Dong 1 ; Sheng, Zebin 2 ; Wang, Yilin 1 

 Institute of Environmental and Municipal Engineering, Qing Dao University of Technology, Qingdao, China 
 United Design Group Co. Ltd., Shanghai Qingdao Branch, Qingdao, China 
Publication year
2021
Publication date
Mar 2021
Publisher
IOP Publishing
ISSN
17551307
e-ISSN
17551315
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2512940601
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.