It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Improved knowledge of the contributing sources of uncertainty in projections of Arctic sea ice over the 21st century is essential for evaluating impacts of a changing Arctic environment. Here, we consider the role of internal variability, model structure and emissions scenario in projections of Arctic sea-ice area (SIA) by using six single model initial-condition large ensembles and a suite of models participating in Phase 5 of the Coupled Model Intercomparison Project. For projections of September Arctic SIA change, internal variability accounts for as much as 40%–60% of the total uncertainty in the next decade, while emissions scenario dominates uncertainty toward the end of the century. Model structure accounts for 60%–70% of the total uncertainty by mid-century and declines to 30% at the end of the 21st century in the summer months. For projections of wintertime Arctic SIA change, internal variability contributes as much as 50%–60% of the total uncertainty in the next decade and impacts total uncertainty at longer lead times when compared to the summertime. In winter, there exists a considerable scenario dependence of model uncertainty with relatively larger model uncertainty under strong forcing compared to weak forcing. At regional scales, the contribution of internal variability can vary widely and strongly depends on the calendar month and region. For wintertime SIA change in the Greenland-Iceland-Norwegian and Barents Seas, internal variability contributes 60%–70% to the total uncertainty over the coming decades and remains important much longer than in other regions. We further find that the relative contribution of internal variability to total uncertainty is state-dependent and increases as sea ice volume declines. These results demonstrate that internal variability is a significant source of uncertainty in projections of Arctic sea ice.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, United States of America
2 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, United States of America; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, United States of America; Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
3 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, United States of America