It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In vehicular communication, signal transmission in vehicle-to-infrastructure (V2I) mode typically takes place on highways, urban, suburban and rural environments. The presence of buildings in these environments poses a challenge to model path loss (PL) due to multiple propagation mechanisms such as diffractions and reflections. However, very little attention has been made to address building effects on the performance of V2I communication links in microcell environment. This paper investigates signal propagation characteristics caused by the impact of building under micro-cellular environment whereby the base station or road-side-unit (RSU) is usually located under the rooftop of building to allow communication between RSU and mobile station or on-board-unit (OBU) on the road. The goal of this paper is to validate and discuss available path loss models based on effect of building obstruction towards RSU-OBU links specifically in residential housing area. The channel measurements are conducted based on static line-of-sight (LOS) settings of a real-world environment at 2.4 GHz frequency band using IEEE 802.15.4 XBee S2C compliant device to measure its receive power. The results are demonstrated based on received signal strength indicator (RSSI) and root mean square error (RMSE). The attenuation profile is validated and compared with suitable path loss models to evaluate best fit and most compatible model based on our measurements data and environment. The analysis shows that several V2I path loss models and V2V channel models are applicable to be used as a reference to model in LOS microcell environment with building obstruction. The finding shows that PL Urban yields the best fit V2I path loss model in terms of RMSE when compared to our measurement campaign at 2.4 GHz.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Motorsports Technology Research Unit (MoTECH), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia; School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
2 Motorsports Technology Research Unit (MoTECH), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia; School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
3 School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
4 Univesity of West of Scotland, UK