It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Increasing growing season temperatures and the seasonal redistribution of precipitation due to climate change have recently been recorded across the globe. Simultaneously, increases of severe droughts and windstorm frequency have also been documented. However, the impacts of climate change on tree growth performance and fitness might largely differ among coexisting species. Consequently, ongoing temperature increases could lead to extensive changes in tree species compositions in many forest biomes including temperate mountain forests. In this study we used an extensive dataset of 2824 cored trees of three species from two sites, and parameterized a purely climate driven process-based model (Vaganov–Shaskin) to simulate the growth dynamics and climatic limitations of coexisting Picea abies, Fagus sylvatica and Abies alba in two of the oldest mountain forest reserves in Central Europe (the Boubín and Žofín Primeval Forests). We assumed that the species composition reflects climatic growth limitations, and considered between-site differences in mean temperature due to elevation as a model of future climate change effects on mountain forests. Our results show a complexity of site- and species-specific responses of Central European forests to climate change. Over the last 70 years, the proportion of F. sylvatica in Central European natural forests has increased at the expense of conifers. During the investigated period, we observed an increase in the growth rates of the studied species mainly at the higher elevation site, while for the lower elevation site there was increasing intensity of moisture limitation. Despite being the most moisture-limited species, P. abies showed the highest simulated growth rates. In contrast, A. alba was the least moisture limited of all considered species. Given its recent proportion in the forest species composition and intermediate drought resistance, we anticipate the future expansion of F. sylvatica in Central European mountain forests.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Department of Forest Ecology, Silva Tarouca Research Institute, Lidická 25-27, 602 00 Brno, Czech Republic
2 Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487 Greifswald, Germany; Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
3 Department of Forest Ecology, Silva Tarouca Research Institute, Lidická 25-27, 602 00 Brno, Czech Republic; Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic