It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The motion of the aerodynamic tether system includes two stages - the deployment and the motion of the deployed system. The initial condition for the deployment model is that of a spacecraft with a rigidly connected second body in a circular orbit about the planet. The deployment process is based on the aerodynamic forces acting on bodies. After the separation of the rigid connection, further motions of the bodies are then controlled by the tether release mechanism which unreels the tether and controls the rate at which the tether is unreeled. The motion of the system is described by the multi-point model, splitting the tether into a number of parts and using the series of separations of material points from the spacecraft, thus forming a mathematical model of the system with distributed parameters. The aerodynamic forces acting on the tether are taken into consideration. This model makes it possible to calculate numerically elastic deformations and curvature of the tether and provides more accurate modelling if compared with the two-point model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Samara National Research University, Samara, Russia; Wrexham Glyndwr University, Wrexham, UK
2 Samara National Research University, Samara, Russia
3 Wrexham Glyndwr University, Wrexham, UK