It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Frequency domain decomposition (FDD) is one of OMA methods in the frequency domain and this method has become well-known among engineering community engaged in the system modal identification due to its capability as a user-friendly and fast processing algorithm. Though, this method has problems in offering an accurate estimation of modal damping ratios, even though natural frequencies and mode shapes can be accurately estimated. The accurate estimation of modal damping is still an open problem and often leads to biased estimates since the errors are stemming from each step in FDD procedures and primarily caused by signal processing. Therefore, the identification of modal damping ratio turns out to be immensely essential in structural dynamics since damping is one of the crucial parameters of resonance. This study is to determine the appropriate signal processing for FDD because signal processing such as the time window, correlation function (CF) and the spectral density (SD) are the main contributors to the bias estimate. The goal of this paper is to provide necessary information on modal damping for reliable estimation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Noise and Vibration, Universiti Teknologi Malaysia (UTM), 54100 Kuala Lumpur, Malaysia
2 School of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Malaysia