It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In vitro kinetic measurements allow mechanistic characterization of binding interactions and are particularly valuable throughout drug discovery, from confirmation of on-target binding in early discovery to fine-tuning of drug-binding properties in pre-clinical development. Early chemical matter often exhibits transient kinetics, which remain challenging to measure in a routine drug discovery setting. For example, characterization of irreversible inhibitors has classically relied on the alkylation rate constant, yet this metric fails to resolve its fundamental constituent rate constants, which drive reversible binding kinetics and affinity complex inactivation. In other cases, extremely rapid association processes, which can approach the diffusion limit, also remain challenging to measure. To address these limitations, a practical kinetic rebinding assay is introduced that may be applied for kinetic screening and characterization of compounds. The new capabilities afforded by this probe-based assay emerge from mixed-phase partitioning in a flow-injection configuration and have been implemented using label-free biosensing. A finite element analysis-based biosensor model, simulating inhibition of rebinding within a crowded hydrogel milieu, provided surrogate test data that enabled development and validation of an algebraic model for estimation of kinetic interaction constants. An experimental proof-of-principle demonstrating estimation of the association rate constant, decoupled from the dissociation process, provided further validation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Genentech Inc., Biophysical Group, Biochemical and Cellular Pharmacology, South San Francisco, USA (GRID:grid.418158.1) (ISNI:0000 0004 0534 4718)