It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Data across scales are required to monitor ecosystem responses to rapid warming in the Arctic and to interpret tundra greening trends. Here, we tested the correspondence among satellite- and drone-derived seasonal change in tundra greenness to identify optimal spatial scales for vegetation monitoring on Qikiqtaruk—Herschel Island in the Yukon Territory, Canada. We combined time-series of the Normalised Difference Vegetation Index (NDVI) from multispectral drone imagery and satellite data (Sentinel-2, Landsat 8 and MODIS) with ground-based observations for two growing seasons (2016 and 2017). We found high cross-season correspondence in plot mean greenness (drone-satellite Spearman’s ρ 0.67–0.87) and pixel-by-pixel greenness (drone-satellite R 2 0.58–0.69) for eight one-hectare plots, with drones capturing lower NDVI values relative to the satellites. We identified a plateau in the spatial variation of tundra greenness at distances of around half a metre in the plots, suggesting that these grain sizes are optimal for monitoring such variation in the two most common vegetation types on the island. We further observed a notable loss of seasonal variation in the spatial heterogeneity of landscape greenness (46.2%–63.9%) when aggregating from ultra-fine-grain drone pixels (approx. 0.05 m) to the size of medium-grain satellite pixels (10–30 m). Finally, seasonal changes in drone-derived greenness were highly correlated with measurements of leaf-growth in the ground-validation plots (mean Spearman’s ρ 0.70). These findings indicate that multispectral drone measurements can capture temporal plant growth dynamics across tundra landscapes. Overall, our results demonstrate that novel technologies such as drone platforms and compact multispectral sensors allow us to study ecological systems at previously inaccessible scales and fill gaps in our understanding of tundra ecosystem processes. Capturing fine-scale variation across tundra landscapes will improve predictions of the ecological impacts and climate feedbacks of environmental change in the Arctic.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom; Department of Biology, Aarhus University, Aarhus, Denmark
2 School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
3 Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark; The Neukom Institute for Computational Science and the Institute of Arctic Studies, Dartmouth College, Hanover, NH, United States of America
4 Department of Geography, University of Exeter, Exeter, United Kingdom