It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cystic Fibrosis (CF) is one of the most prevalent autosomal recessive inherited disease in Caucasians. Rates of CF were thought to be negligible in non-Caucasians but growing epidemiological evidence shows CF is more common in Indian, African, Hispanic, Asian, and other ethnic groups than previously thought. Almost all second-tier molecular diagnostic tools currently used to confirm the diagnosis of CF consist of panels of the most common CF-causing DNA variants in Caucasians. However non-Caucasian individuals with CF often have a different spectrum of pathogenic variants than Caucasians, limiting the clinical utility of existing molecular diagnostic panels in this group. As a consequence of racially inequitable CF testing frameworks, non-Caucasians with CF encounter greater delays in diagnosis and associated harms than Caucasians. An unbiased approach of detecting CF-causing DNA variants using full gene sequencing could potentially address racial inequality in current CF testing.
Case presentation
We present the case of a female baby from rural India who had a borderline first-tier newborn screening result for CF. Instead of choosing a targeted CF panel for second-tier testing, we used next-generation DNA sequencing to comprehensively analyze the cystic fibrosis transmembrane conductance regulator gene as an unbiased approach for molecular confirmation of CF. Sequencing identified two pathogenic variants that cause CF. One variant (c.1521_1523delCTT) is the most common cause of CF, while the other variant (c.870-1G > C) is absent from all population allele databases and has not been found in the Indian population previously. The rare variant would not have been detected by all currently available targeted CF panels used for second- or third-tier molecular CF testing.
Conclusions
Our use of full gene sequencing as a second-tier CF test in a non-Caucasian patient avoided the problems of missed diagnosis from using Caucasian-biased targeted CF panels currently recommended for second-tier testing. Full gene sequencing should be considered as the standard methodology of second-tier CF testing to enable equal opportunity for CF diagnosis in non-Caucasians.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer