It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Precision education is a new challenge in leveraging artificial intelligence, machine learning, and learning analytics to enhance teaching quality and learning performance. To facilitate precision education, text marking skills can be used to determine students’ learning process. Text marking is an essential learning skill in reading. In this study, we proposed a model that leverages the state-of-the-art text summarization technique, Bidirectional Encoder Representations from Transformers (BERT), to calculate the marking score for 130 graduate students enrolled in an accounting course. Then, we applied learning analytics to analyze the correlation between their marking scores and learning performance. We measured students’ self-regulated learning (SRL) and clustered them into four groups based on their marking scores and marking frequencies to examine whether differences in reading skills and text marking influence students’ learning performance and awareness of self-regulation. Consistent with past research, our results did not indicate a strong relationship between marking scores and learning performance. However, high-skill readers who use more marking strategies perform better in learning performance, task strategies, and time management than high-skill readers who use fewer marking strategies. Furthermore, high-skill readers who actively employ marking strategies also achieve superior scores of environment structure, and task strategies in SRL than low-skill readers who are inactive in marking. The findings of this research provide evidence supporting the importance of monitoring and training students’ text marking skill and facilitating precision education.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer