It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mixing cations has been a successful strategy in perovskite synthesis by solution-processing, delivering improvements in the thermodynamic stability as well as in the lattice parameter control. Unfortunately, the relation between a given cation mixture and the associated structural deformation is not well-established, a fact that hinders an adequate identification of the optimum chemical compositions. Such difficulty arises since local distortion and microscopic disorder influence structural stability and also determine phase segregation. Hence, the search for an optimum composition is currently based on experimental trial and error, a tedious and high-cost process. Here, we report on a machine-learning-reinforced cubic-phase-perovskite stability predictor that has been constructed over an extensive dataset of first-principles calculations. Such a predictor allows us to determine the cubic phase stability at a given cation mixture regardless of the various cations’ pair and concentration, even assessing very dilute concentrations, a notoriously challenging task for first-principles calculations. In particular, we construct machine learning models, predicting multiple target quantities such as the enthalpy of mixing and various octahedral distortions. It is then the combination of these targets that guide the laboratory synthesis. Our theoretical analysis is also validated by the experimental synthesis and characterization of methylammonium–dimethylammonium-mixed perovskite thin films, demonstrating the ability of the stability predictor to drive the chemical design of this class of materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, PO Box 34110 Doha, Qatar
2 Qatar Computing Research Institute, Hamad Bin Khalifa University, PO Box 34110 Doha, Qatar
3 School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland