It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present study aimed at isolation of endophytic basidiomycetous fungi and evaluation of their in-vitro and in-vivo antidiabetic potential. Preliminary screening for in-vitro activity was carried out using α-glucosidase inhibition assay. An endophytic isolate Sch1 (isolated from Aloe vera), identified to be Schizophyllum commune Fr. on molecular basis, exhibiting more than 90% α-glucosidase inhibitiory activity was selected for further studies. Detailed in-vivo investigations for antidiabetic potential of ethyl acetate extract of S. commune (Sch1), at two different doses, were carried out in streptozotocin induced diabetic Wistar rats. Treatment of diabetic rats with S. commune extract caused significant decrease in blood glucose level and increase in body weight after 14 days experimental period. It significantly restored renal parameters including creatinine, blood urea nitrogen, fractional excretion of sodium, and potassium level in diabetic rats. Improvement in lipid profile and level of antioxidant parameters viz. reduced glutathione, thiobarbituric acid reactive species, and superoxide anion generation was also observed after treatment. Liver enzymes (serum glutamic pyruvic transaminase, serum glutamic-oxaloacetic transaminases, and alkaline phosphatase) homeostasis was found to be markedly improved in diabetic rats administered with S. commune extract. The effects were more pronounced at higher concentration and comparable to acarbose which was used as positive control. Phytochemical analysis revealed the presence of phenolics and terpenoids in the ethyl acetate extract. This is the first report highlighting the therapeutic potential of an endophytic S. commune in the management of diabetes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Guru Nanak Dev University, Department of Microbiology, Amritsar, India (GRID:grid.411894.1) (ISNI:0000 0001 0726 8286)
2 Guru Nanak Dev University, Department of Pharmaceutical Sciences, Amritsar, India (GRID:grid.411894.1) (ISNI:0000 0001 0726 8286)