It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Water footprint (WF), a comprehensive indicator of water resources appropriation, has evolved as an efficient tool to improve the management and sustainability of water resources. This study quantifies the blue and green WF of major cereals crops in India using high resolution soil and climatic datasets. A comprehensive modelling framework, consisting of Evapotranspiration based Irrigation Requirement (ETIR) tool, was developed for WF assessment. For assessing climate change impact on WF, multi-model ensemble climate change scenarios were generated using the hybrid-delta ensemble method for RCP4.5 and RCP6.0 and future period of 2030s and 2050s. The total WF of the cereal crops are projected to change in the range of − 3.2 to 6.3% under different RCPs in future periods. Although, the national level green and blue WF is projected to change marginally, distinct trends were observed for Kharif (rainy season—June to September) and rabi (winter season—October to February) crops. The blue WF of paddy is likely to decrease by 9.6%, while for wheat it may increase by 4.4% under RCP4.5 during 2050s. The green WF of rabi crops viz. wheat and maize is likely to increase in the range of 20.0 to 24.1% and 9.9 to 16.2%, respectively. This study provides insights into the influences of climate change on future water footprints of crop production and puts forth regional strategies for future water resource management. In view of future variability in the WFs, a water footprint-based optimization for relocation of crop cultivation areas with the aim of minimising the blue water use would be possible management alternative.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Farming System Research Centre for Hill and Plateau Region, ICAR-Research Complex for Eastern Region, Ranchi, India
2 International Maize and Wheat Improvement Centre (CIMMYT), CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA), New Delhi, India (GRID:grid.505936.c)
3 Indian Council of Agricultural Research (ICAR), Natural Resource Management Division, New Delhi, India (GRID:grid.418105.9) (ISNI:0000 0001 0643 7375)