Full Text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nanoparticles (NPs) can serve as a promising vaccine delivery platform for improving pharmacological property and codelivery of antigens and adjuvants. However, NP‐based vaccines are generally associated with complex synthesis and postmodification procedures, which pose technical and manufacturing challenges for tailor‐made vaccine production. Here, modularly programmed, polyethyleneimine (PEI)‐based NP vaccines are reported for simple production of personalized cancer vaccines. Briefly, PEI is conjugated with neoantigens by facile coupling chemistry, followed by electrostatic assembly with CpG adjuvants, leading to the self‐assembly of nontoxic, sub‐50 nm PEI NPs. Importantly, PEI NPs promote activation and antigen cross‐presentation of antigen‐presenting cells and cross‐priming of neoantigen‐specific CD8+ T cells. Surprisingly, after only a single intratumoral injection, PEI NPs with optimal PEGylation elicit as high as ≈30% neoantigen‐specific CD8+ T cell response in the systemic circulation and sustain elevated CD8+ T cell response over 3 weeks. PEI‐based nanovaccines exert potent antitumor efficacy against pre‐established local tumors as well as highly aggressive metastatic tumors. PEI engineering for modular incorporation of neoantigens and adjuvants offers a promising strategy for rapid and facile production of personalized cancer vaccines.

Details

Title
Modularly Programmable Nanoparticle Vaccine Based on Polyethyleneimine for Personalized Cancer Immunotherapy
Author
Nam, Jutaek 1 ; Son, Sejin 1 ; Park, Kyung Soo 2 ; Moon, James J 3   VIAFID ORCID Logo 

 Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA 
 Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA 
 Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA 
Section
Full Papers
Publication year
2021
Publication date
Mar 2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2517213111
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.