This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
In the applications of high-power mechanical transmission areas, to guarantee the load on each component within the safe ranges, split-torque transmission systems are widely used. Planetary gear train (PGT) is one of the most popular split-torque transmission systems, because of its advantages such as high-power density, high transmission ratio, low bearing load, and compactness. Theoretically, the input torque should be shared evenly by all the planets. In practical applications, however, each path of a PGT will carry uneven load due to the presence of errors, such as tooth thickness error and pin position error. The load sharing behaviours are affected by a variety of factors such as the gravity, support stiffness of central components, bearing clearance, backlashes, applied torque, and component flexibility [1]. Uneven load sharing leads one or several planet gears to carry load which is more than the nominal value, which shortens the lifetime of PGT systems and increases potential damaging risk.
In the past 20 years, nonlinearities in geared systems caused by factors including backlash [2], time-varying mesh stiffness [3], friction [4] between the mating gear teeth, and the error of the gear transmission have been the main concerns of researchers. Neglecting the effects of dynamic vibrations, the quasistatic load sharing behaviours of PGTs have been extensively studied [5]. Previous quasistatic analysis showed that the load sharing behaviours of PGTs are sensitive to the manufacturing errors [6], and this sensitivity increases with the increasing of the number of planet gears [7]. The results obtained from finite element models showed that load sharing is dramatically affected by the applied torque [8]. Floating one or several central components can improve the load sharing and decrease critical tooth stress [9]. These aforementioned conclusions obtained by quasistatic analysis have been confirmed by experimental results [10–12]. Ligata et al. [13] presented planet load sharing formulas under quasistatic conditions, and these formulas revealed the influence of various parameters and errors on the load sharing. Singh [14, 15] gave a physical explanation for the basic mechanism which causes the unequal load sharing phenomenon. Quasistatic analysis shows the mechanism of the influence of various parameters and errors on the load sharing as static factors and provides researchers a basic understanding on the loading sharing problems. However, these studies cannot explore the effects of the dynamic factors which are unavoidable in practical PGTs under the actual working conditions.
In order to further predict the load sharing behaviours under practical dynamic working conditions, some researchers investigated the dynamic load sharing by using lumped-parameter models. Kahraman [16] established a relationship between dynamic load and static load by defining the dynamic load factor to indicate the effects of dynamic factors on mesh load. Considering the planet pin position errors [17, 18] and eccentricities [19], Gu and Velex investigated the influence of centrifugal forces and pin flexibility on system with rotating carriers. Results indicate the centrifugal forces of rotating carrier may change the dynamic load sharing behaviours. It is believed that the manufacturing errors may significantly increase the dynamic vibrations [20–22], and the dynamic behaviours have different sensitivity to different kinds of errors [23]. Mo et al. [24, 25] conducted analytical investigation of load sharing characteristics for herringbone planetary gear train with flexible support and multipower face gear split flow system. The impacts of manufacturing errors, assembly errors, manufacturing error phases, assembly error phases, meshing damping, support stiffness, and the input power on the load sharing coefficients were analyzed. The load sharing may be improved by modifying the tooth profile [26] and floating one central component [27]. However, the floating central component will lead large vibrations [28]. The aforementioned dynamic analysis was proposed by numerical methods. These numerical methods may provide accurate solutions; however, they were not able to reveal the mechanism of the influence of the system parameters and the variety of errors on the dynamic load sharing.
In this effort, an analytical solution on the dynamic load sharing behaviours of PGTs is proposed by investigating a lumped-parameter model. Based on the previous works [29, 30] and the authors’ efforts [31, 32], the method of multiple-scales (MMS) is applied to analyse the dynamic load sharing behaviours under the effects of tooth thickness errors and the pin position errors for the first time. Closed-form expressions of mesh force versus mesh frequency are derived by MMS. Through these expressions, the effects of several key parameters, tooth thickness errors, pin position errors, and tooth profile modifications (TPM) on the dynamic load sharing behaviours are illustrated. Numerical integration is employed to verify the proposed method. This study provides guidance for the selections of the key parameters of the PGT systems. The rest of this article is organized as follows. In the second section, the modelling and problem definition are presented. In the third section, closed-form expressions of mesh forces are driven through the method of multiple-scales (MMS). Analytical and numerical results and discussions are presented in the fourth section. Finally, conclusions are collected together and presented.
2. Model and Problem Definition
2.1. Modelling with Various Kinds of Errors
A lumped-parameter model of PGTs with a sun gear, a fixed carrier, a ring gear, and N planet gears is shown in Figure 1. In this model, only the rotational motions of each component and two translational motions of the sun gear are considered. The number of degree of freedom is N + 5. In Figure 1, kbs is the translational stiffness of the sun gear. ksp and krp are the mesh stiffness of the pth s-p and r-p mesh, respectively. ksu, kru, and kcu are the torsional stiffness of sun, ring, and carrier, respectively. u denotes the rotational motions.
[figure omitted; refer to PDF]
Figures 2 and 3 are two diagrams to describe the r-p and s-p mesh, respectively. In these two figures, e and h are equivalent tooth thickness errors and the gap induced by tooth profile modifications, respectively.
[figure omitted; refer to PDF]
The tooth separation is modelled by
[figure omitted; refer to PDF]
The sun gear links with N planet gears and the equation of motion could be expressed as
As shown in Figure 5, all the planet gears are fixed on the carrier and the equation of carrier rotational motion is
[figure omitted; refer to PDF]
As shown in Figure 6(a), the tooth thickness error is the deviation between the actual tooth thickness and the design involute tooth thickness. When the actual tooth is thicker, the additional mesh force is positive and vice versa. The pin position error is shown in Figure 6(b). In a rotating component, both time-varying and time-invariant pin position errors exist. The time-varying pin position errors are induced in the manufacturing process. The direction of these manufacturing pin position errors changes with the rotating of the component. The time-invariant pin position errors are induced in the assemble process. The values and the directions of the assemble pin position errors are consistent once the component assembled.
[figures omitted; refer to PDF]
Figure 7 shows how different errors affect the equivalent tooth thickness errors. For the sake of simplicity, the carrier is not shown. Converting all the errors to the gear pair meshing lines, the equivalent tooth thickness errors obtained through superposition could be expressed as
[figure omitted; refer to PDF]
In equation (8), Epr, Eps, and Epp represent the tooth thickness errors of ring, sun gear, and the pth planet gear, respectively. Ecc, Ecr, Ecs, and Ecp represent the pin position errors of the carrier, ring, sun gear, and the pth planet gear, respectively.
Then, the additional mesh force introduced by equivalent tooth thickness errors on the pth s-p mesh and r-p mesh is obtained,
There are several methods to modify gear tooth surfaces, including crowning, tip relief, and root relief with linear or parabolic variations with roll angle. The TPM curves, the magnitude of the relief, and the modification length are the three key factors that determine the effects of the TPM on vibration reduction. Without loss of generality, linear relief is applied to double tooth pair contact areas about the tooth tip and root in this study. As shown in Figure 8, for the spur PGTs, TPM is applied on the double teeth contact area about the tooth tip and root. The additional mesh force introduced by TPM on the pth s-p and r-p mesh could be expressed as
[figure omitted; refer to PDF]
From equations (1)–(7), the system equation in matrix form is
M is the mass matrix,
Kb is the support stiffness matrix between the PGT and the fixture. Kmv and Km0 are the varying part and mean part of stiffness matrix, respectively.
In this study, the rectangle waves [30, 33] are applied to approximate the time-varying mesh stiffness. As shown in Figure 9, mesh stiffness varies as the number of contact tooth pair changes. Ksp is the nondimensional mesh stiffness matrix and can be written as
[figure omitted; refer to PDF]
Krp has a similar form as Ksp.
C is the damping matrix in the form of
Ft is the external load vector. Fd and Fm are respectively the inner force vectors introduced by the equivalent tooth thickness errors and TPM.
The eigenvalue problem associated with the linear free vibration of the PGTs is
2.2. Problem Definition
In Figure 10, the time histories of s-p mesh forces of a 5-planet example system with given parameters in Table 1 are presented. Without any error, the mesh forces for all the s-p mesh pairs are equal. As shown in Figure 10(a), the value of mesh force at point A is the maximum. Let
[figures omitted; refer to PDF]
Table 1
System parameters of the example PGTs.
Parameters | Values |
No. of planets, N | 3 ∼ 6 |
Support stiffness of sun gear (N/m) | 1e10 (fixed), 1e6 (float) |
Mean s-p mesh stiffness (N/m) | 0.62e9 |
Mean r-p mesh stiffness (N/m) | 0.85e9 |
First harmonic of s-p mesh stiffness (N/m) | 0.14e9 |
First harmonic of r-p mesh stiffness (N/m) | 0.11e9 |
s-p, r-p mesh phasing angle | 0 |
Pressure angle (deg) | 22.5 |
Input torque to sun, Ts (Nm) | 1130 |
Sun inertia | 6.21 |
Planet inertia | 4.89 |
Damping ratio | 0.02 |
Tooth number of sun gear in 5-planet system | 34 |
Tooth number of planet gear in 5-planet system | 31 |
Tooth number of ring in 5-planet system | 96 |
Module (mm) | 4 |
Face width (mm) | 40 |
The ideal load condition for a PGT system is that each path will carry an equal load and the dynamic mesh force values are low. To illustrate the dynamic load sharing, the load sharing coefficients of the s-p mesh
The s-p load sharing factor
In order to indicate the maximum mesh force, the dynamic load factor
In the case of the PGTs manufacture perfectly without error, as shown in Figure 10(a),
3. Perturbation Analysis on Dynamic Mesh Forces
To investigate the dynamic load sharing and load factor of PGTs, an approximate solution for the mesh force is sought by using the MMS [35]. The tooth separation function can be approximated as
The approximated expression of
Substituting equation (29) into the definition of the dynamic load sharing coefficients in equation (24),
Let
Substituting equation (32) into equation (31), equation (31) could be simplified as
From equation (33), one can see that the load sharing coefficients are determined by
Substituting equation (29) into the definition of the dynamic load factor in equation (26), one has
The corresponding expressions for r-p meshes are similar to the expressions for s-p meshes.
4. Results and Discussions
In this investigation, the effects of the errors, the support stiffness of sun gear, the applied torque, and tooth profile modification on the load sharing factors and the dynamic load factors will be discussed following. The main parameters of the example systems with different number of planet gear are listed in Table 1. As shown in Table 1, the only difference among the given several PGT systems is the number of planet gears. The two natural frequencies associated with the first two rotational vibration modes,
Table 2
Natural frequencies associated with the first two rotational modes.
No. of planets, N | |
3 | 2114, 4674 |
4 | 2233, 5249 |
5 | 2329, 5775 |
6 | 2412, 6260 |
4.1. Validation of the Proposed Method
To verify the proposed method, assume the 1st planet gear has the time-invariant tooth profile errors, er1 = es1 = 50
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
With sun gear fixed, as shown in Figure 11, the 1st planet gear takes the heaviest load due to the errors. Because of the symmetry positions to the 1st planet gear, the 2nd and Nth planet gears carry equal loads; the 3rd and (N − 1)th planet gears carry equal loads. With sun gear floated, as shown in Figure 12, all the planet gears in 3-planet PGT systems carry almost equal load and the opposite planet gears in 4-planet gears carry equal load. With the increase of the number of planet gears, the load sharing coefficients become more sensitive to the errors. These conclusions agree well with the conclusions obtained by previous static analysis [6, 7, 10]. In Figures 11 and 12, all the curves obtained by MMS agree well with the NI results.
One can find the dynamic load sharing coefficients vary with the changing of mesh frequency. This is because the amplitudes of mesh forces are the functions of the modal vibration amplitudes
[figures omitted; refer to PDF]
It should be noted that, the softening nonlinearity and vibration jump phenomenon appear in the primary resonance ranges. The frequency-load sharing coefficient curves have three branches near the primary resonance, and the middle branch is unstable.
4.2. Effects of the Errors in Planet Gears
It is believed that both of the planet pin position errors and tooth thickness errors are parts of the vibration excitations of PGTs [31, 32]. In order to explore the effects of tooth thickness errors and pin position errors of planet gear on the planet load sharing, especially on the dynamic load factor, the effects of the equivalent tooth thickness error on the load sharing factors and dynamic load factors are discussed here.
Figure 14 shows the effects of er1 and es1 for the 5-planet system versus mesh frequency. With the increasing of er1 and es1, the load sharing factors increase and the frequency ranges with contact loss expanded. It is worth noting that the increase of the load sharing factors is almost proportional to the increase of er1 and es1, as shown in Figure 15. The results in Figure 15(a) have similar trend with the results presented in references [9, 15]. According to Bodas and Kahraman [6], the load sharing is proportional to the absolute magnitude of carrier and gear manufacturing errors. From Figure 15(b), one can see that, in dynamic conditions, the load sharing is also proportional to the absolute magnitude of equivalent tooth thickness errors. However, with same amount of equivalent tooth thickness error, the load sharing in dynamic conditions is better.
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
It is believed that the error induces vibration and then leads the increase of the dynamic load factor, as shown in Figure 16. In addition, by this figure, one can find the dynamic load factor is proportional to the equivalent tooth thickness error. Selecting high-precision gears will certainly reduce the dynamic mesh load and improve load sharing performance.
[figures omitted; refer to PDF]
4.3. Effects of Pin Position Error of Central Components
Pin position error of central components is a critical factor affecting the dynamic load sharing. In Figure 17, the load sharing coefficients for a 5-planet system with either
[figures omitted; refer to PDF]
The effects of the pin position errors on dynamic load sharing factors versus mesh frequency are shown in Figure 18. The load sharing factors are proportional to the pin position errors of sun gear and ring gear, and the frequency ranges with tooth separations are increased by the increasing of these errors. The curves in Figure 19 indicate that there exist little effects of the pin position errors on the dynamic factors. It suggests that the pin position errors of sun gear and ring gear affect the load sharing behaviours mainly as static factors.
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
4.4. Effects of Applied Torque
Applied torque is another key factor that affects the dynamic characteristic of PGT system. Figure 20 shows the effects of the applied torque on the dynamic factors versus mesh frequency with er1 = es1 = 50
[figures omitted; refer to PDF]
The load sharing coefficients of 5-planet system with varying applied torque in both quasistatic and dynamic conditions are shown in Figure 21. The curves in Figure 21(a) agree well with the results obtained under quasistatic conditions in reference [8]. Once again, the dynamic load sharing is better than the corresponding results in quasistatic, because of the effects of vibrations. Considering the static strength of gear tooth, increasing the applied torque to suppress the effects of equivalent tooth thickness error is not the first option.
[figures omitted; refer to PDF]
4.5. Effects of the Support Stiffness of Sun Gear
In order to explore the mechanism of the float sun gear on the improvement of the dynamic load sharing, the comparisons of the translational displacements of sun gear of a five-planet system with/without float sun gear are shown in Figure 22. With sun gear floated, the equilibrium position of sun gear is put away from the origin point, and the vibration amplitudes of the translational displacements are increased. From equation (29), one can find that float sun gear with low support stiffness allows the equilibrium position to change and induces the translational motions, which compensates the uneven effects of the equivalent tooth thickness errors.
[figures omitted; refer to PDF]
In practical PGTs, the sun gear is not absolutely float or fixed. To further explore the effects of the sun gear support stiffness, the influences of the support stiffness on the load sharing factors and the dynamic load factor of sun gear for the 5-planet system are shown in Figures 23 and 24, respectively. The load sharing factor decreases with the support stiffness of sun gear decreasing, and the load sharing is improved. The dynamic load factor slightly decreases with the decreasing of the support stiffness of sun gear.
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
In the case of low rotational speed, the load sharing condition is close to those in quasistatic condition. As shown in Figure 25(a), the load sharing coefficients are almost constant when
[figures omitted; refer to PDF]
4.6. Effects of Tooth Profile Modifications
TPM has been proved as an effective method to decrease the vibrations of PGT system [30–32]. Without TPM, tooth separations occur when
[figures omitted; refer to PDF]
In Figures 27(a) and 27(b), the load sharing factors
[figures omitted; refer to PDF]
Since the TPM is effective to decrease the system vibration amplitudes, TPM must be an effective method to decrease the dynamic load factors. As shown in Figures 27(c) and 27(d), TPM dramatically decreases the dynamic load factors in the primary resonance frequency ranges.
The static and quasistatic results of the load sharing factors agree well with dynamic analysis, and the static and quasistatic analysis has advantages in analysis efficiency. However, dynamic analysis can offer a better understanding of the dynamic load factors. So, selection of static and dynamic analysis depends on the main focus on the PGTs.
5. Conclusion
In this study, a simplified discrete model is presented to investigate the load sharing among the planet meshes of PGTs with several type errors. Both of the cases of fixed and float sun gear are investigated to study the effects of the support stiffness of sun gear on the load sharing. Time-varying mesh stiffness and tooth separations are also considered. The method of multiple-scales (MMS) is used to obtain the response and closed-form expressions of mesh force are derived over the important mesh frequency ranges. From these expressions, the effects of several key factors such as the tooth thickness and pin position errors, applied torque, support stiffness of sun gear, and tooth profile modifications on dynamic load sharing behaviours are explored. The validation of MMS is obtained by the results of numerical integration and previously published predictions. Several conclusions are obtained:
(1) The amplitudes of dynamic mesh force are the function of vibration amplitude which is associated with the mesh frequency. That means the load sharing factors and the dynamic load factors are the functions of mesh frequency.
(2) For PGTs with different number of planet gears, the load sharing coefficients have similar trend versus mesh frequency. With equivalent tooth thickness error on the 1st planet gear, the dynamic load sharing factor is proportional to the absolute magnitude of equivalent tooth thickness errors. While with the increasing of the planet gear number, the load sharing factors and dynamic load factors became more sensitive to the equivalent tooth thickness errors.
(3) With equivalent tooth thickness error on the 1st planet gear, for 3-planet gear PGTs, the 2nd and 3rd planet gears carry equal load because of the geometric symmetry of position. For the same reason, the 2nd and 4th planet gears for 4-planet PGTs carry equal load. For 5- and 6-planet systems, the 2nd and Nth and 3rd and (N − 1)th planets carry equal load, respectively.
(4) Floating sun gear decreases the dynamic mesh load while optimizing the load sharing although the vibration amplitude of sun gear increases. That means floating sun gear is one of the effective methods to improve the dynamic load sharing with high priority.
(5) Large applied torque and low support stiffness of sun gear help to compensate the effects of manufacturing errors and to improve the load distribution. But large applied torque increases the nominal transmit mesh forces. Considering the static strength of gear tooth, increasing the applied torque to suppress the effects of equivalent tooth thickness error is not the first option.
(6) Tooth profile modification is effective to eliminate the tooth separation and decrease the vibration amplitudes. The amplitudes of mesh forces are also decreased by proper TPM. These effects further help to suppress the fluctuations of the dynamic load factor versus mesh frequency. With proper TPM, one can approximate the dynamical load sharing factors by the result obtained in quasistatic conditions.
Acknowledgments
The authors gratefully acknowledge the support by the Scientific Research Fund of High-Level Talents in Nanjing Institute of Technology (YKJ 201951).
Glossary
Abbreviations
C:Damping matrix
Ecn:Pin position error
Epn:Tooth thickness error
N:Number of planet gears
Ts:Transmitted torque on sun gear
Z:Tooth number of gears
ai:Modal vibration amplitude
i:DOFs index
kbs:Support stiffness of sun gear
p:Planet gear index
t:Time
xs, ys:Translational motions of sun gear
[1] A. Kahraman, S. Vijayakar, "Effect of internal gear flexibility on the quasi-static behavior of a planetary gear set," Journal of Mechanical Design, vol. 123 no. 3,DOI: 10.1115/1.1371477, 2001.
[2] J. Margielewicz, D. Gąska, G. Litak, "Modelling of the gear backlash," Nonlinear Dynamics, vol. 97 no. 1, pp. 355-368, DOI: 10.1007/s11071-019-04973-z, 2019.
[3] W. Luo, B. Qiao, Z. Shen, "Time-varying mesh stiffness calculation of a planetary gear set with the spalling defect under sliding friction," Meccanica, vol. 55 no. 1, pp. 245-260, DOI: 10.1007/s11012-019-01115-y, 2020.
[4] W. Luo, B. Qiao, Z. Shen, Z. Yang, H. Cao, X. Chen, "Investigation on the influence of spalling defects on the dynamic performance of planetary gear sets with sliding friction," Tribology International, vol. 154,DOI: 10.1016/j.triboint.2020.106639, 2021.
[5] C. G. Cooley, R. G. Parker, "A review of planetary and epicyclic gear Dynamics and vibrations Research," Applied Mechanics Reviews, vol. 66 no. 4,DOI: 10.1115/1.4027812, 2014.
[6] A. Bodas, A. Kahraman, "Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets," JSME International Journal Series C, vol. 47 no. 3,DOI: 10.1299/jsmec.47.908, 2004.
[7] A. Singh, "Application of a system level model to study the planetary load sharing behavior," Journal of Mechanical Design, vol. 127 no. 3,DOI: 10.1115/1.1864115, 2005.
[8] A. N. Montestruc, "Influence of planet pin stiffness on load sharing in planetary gear drives," Journal of Mechanical Design, vol. 133 no. 1,DOI: 10.1115/1.4002971, 2011.
[9] C. Gill-Jeong, R. G. Parker, "Influence of bearing stiffness on the static properties of a planetary gear system with manufacturing errors," KSME International Journal, vol. 18 no. 11,DOI: 10.1007/BF02990440, 2004.
[10] H. Ligata, A. Kahraman, A. Singh, "An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing," Journal of Mechanical Design, vol. 130 no. 4,DOI: 10.1115/1.2885194, 2008.
[11] A. Singh, A. Kahraman, H. Ligata, "Internal gear strains and load sharing in planetary transmissions: model and experiments," Journal of Mechanical Design, vol. 130 no. 7,DOI: 10.1115/1.2890110, 2008.
[12] J.-G. Kim, Y.-J. Park, G.-H. Lee, J.-H. Kim, "An experimental study on the effect of carrier pinhole position errors on planet gear load sharing," International Journal of Precision Engineering and Manufacturing, vol. 17 no. 10,DOI: 10.1007/s12541-016-0155-0, 2016.
[13] H. Ligata, A. Kahraman, A. Singh, "A closed-form planet load sharing formulation for planetary gear sets using a translational analogy," Journal of Mechanical Design, vol. 131 no. 2,DOI: 10.1115/1.3042160, 2009.
[14] A. Singh, "Load sharing behavior in epicyclic gears: physical explanation and generalized formulation," Mechanism and Machine Theory, vol. 45 no. 3,DOI: 10.1016/j.mechmachtheory.2009.10.009, 2010.
[15] A. Singh, "Epicyclic load sharing map-development and validation," Mechanism and Machine Theory, vol. 46 no. 5,DOI: 10.1016/j.mechmachtheory.2011.01.001, 2011.
[16] A. Kahraman, "Load sharing characteristics of planetary transmissions," Mechanism and Machine Theory, vol. 29,DOI: 10.1016/0094-114X(94)90006-X, 1994.
[17] X. Y. Gu, P. Velex, "A lumped parameter model to analyse the Dynamic load sharing in planetary gears with planet errors," Applied Mechanics and Materials, vol. 86, pp. 374-379, DOI: 10.4028/www.scientific.net/amm.86.374, 2011.
[18] X. Gu, P. Velex, "A dynamic model to study the influence of planet position errors in planetary gears," Journal of Sound and Vibration, vol. 331 no. 20,DOI: 10.1016/j.jsv.2012.05.007, 2012.
[19] X. Gu, P. Velex, "On the dynamic simulation of eccentricity errors in planetary gears," Mechanism and Machine Theory, vol. 61,DOI: 10.1016/j.mechmachtheory.2012.10.003, 2013.
[20] C. Yuksel, A. Kahraman, "Dynamic tooth loads of planetary gear sets having tooth profile wear," Mechanism and Machine Theory, vol. 39 no. 7,DOI: 10.1016/j.mechmachtheory.2004.03.001, 2004.
[21] F. Chaari, T. Fakhfakh, R. Hbaieb, "Influence of manufacturing errors on the dynamic behavior of planetary gears," International Journal of Advanced Manufacturing Technology, vol. 27, 2006.
[22] M. Iglesias, A. Fernández, A. De-Juan, R. Sancibrián, P. García, "Planet position errors in planetary transmission: effect on load sharing and transmission error," Frontiers of Mechanical Engineering, vol. 8 no. 1,DOI: 10.1007/s11465-013-0362-7, 2013.
[23] G.-J. Cheon, R. G. Parker, "Influence of manufacturing errors on the dynamic characteristics of planetary gear systems," KSME International Journal, vol. 18 no. 4,DOI: 10.1007/BF02983645, 2004.
[24] M. Shuai, T. Zhang, J. Guo, "Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear," Mechanism and Machine Theory, vol. 144, 2020.
[25] S. Mo, Z. Yue, Z. Feng, L. Shi, Z. Zou, H. Dang, "Analytical investigation on load-sharing characteristics for multi-power face gear split flow system," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234 no. 2,DOI: 10.1177/0954406219876954, 2020.
[26] Y.-J. Park, J.-G. Kim, G.-H. Lee, S. B. Shim, "Load sharing and distributed on the gear flank of wind turbine planetary gearbox," Journal of Mechanical Science and Technology, vol. 29 no. 1,DOI: 10.1007/s12206-014-1237-5, 2015.
[27] F. Ren, D. Qin, T. C. Lim, S. Lyu, "Study on dynamic characteristics and load sharing of a herringbone planetary gear with manufacturing errors," International Journal of Precision Engineering and Manufacturing, vol. 15 no. 9,DOI: 10.1007/s12541-014-0547-y, 2014.
[28] F. Ren, G. Luo, G. Shi, X. Wu, N. Wang, "Influence of manufacturing errors on dynamic floating characteristics for herringbone planetary gears," Nonlinear Dynamics, vol. 93 no. 2, 2018.
[29] C.-J. Bahk, R. G. Parker, "Analytical solution for the nonlinear Dynamics of planetary gears," Journal of Computational and Nonlinear Dynamics, vol. 6 no. 2,DOI: 10.1115/1.4002392, 2010.
[30] C. J. Bahk, R. G. Parker, "Analytical investigation of tooth profile modification effects on planetary gear dynamics," Mechanism and Machine Theory, vol. 70,DOI: 10.1016/j.mechmachtheory.2013.07.018, 2013.
[31] C. Xun, X. Long, H. Hua, "The Effects of multi-mesh tooth profile modifications on planetary gear vibration," Proceedings of the ASME International Mechanical Engineering Congress and Exposition,DOI: 10.1115/imece2016-65780, .
[32] C. Xun, X. Long, H. Hua, "Effects of random tooth profile errors on the dynamic behaviors of planetary gears," Journal of Sound and Vibration, vol. 415,DOI: 10.1016/j.jsv.2017.11.022, 2018.
[33] H. Dai, X. Long, F. Chen, C. Xun, "An improved analytical model for gear mesh stiffness calculation," Mechanism and Machine Theory, vol. 159 no. 1,DOI: 10.1016/j.mechmachtheory.2021.104262, 2021.
[34] A. Kahraman, "Natural modes of planetary gear trains," Journal of Sound and Vibration, vol. 173 no. 1,DOI: 10.1006/jsvi.1994.1222, 1994.
[35] H. N. Ali, M. Deant, Nonlinear Oscillations, 1979.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Chao Xun and He Dai. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
In this paper, an analytical solution on the dynamic mesh forces of planetary gear trains (PGTs) is proposed by investigating a lumped-parameter model. By using the method of multiple-scales (MMS), closed-form expressions of mesh force under the effects of manufacturing and assembly errors are obtained. From these expressions, the effects of several key factors such as the tooth thickness error, pin position error, applied torque, support stiffness of sun gear, and tooth profile modifications (TPM) on dynamic load sharing behaviours are explored. Numerical integration is carried out to verify the validation of the proposed method, and the developed expressions are also validated by comparing the results with previously published predictions. The results for several examined PGT systems show that the key factors abovementioned affect the dynamic load sharing behaviours as both static and dynamic factors. An important new conclusion obtained by this work is that proper tooth profile modifications keep the dynamic load sharing factors almost equal to the results obtained under static conditions. This conclusion provides the possibility to simplify the dynamic analysis to the static analysis on the dynamic load sharing problems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer