Abstract

The growing ageing population in China poses a huge demand for rehabilitation care, which can be satisfied by the latest robot technology. Focusing on the motion system of a six degrees-of-freedom (DOF) robot, this paper explores the relationship between the force, torque, velocity and the postures of the end effector and joint. Drawing on robot control theories, the existing manipulator force/position hybrid controllers were reviewed, and a force/position hybrid controller was designed for path planning of rehabilitation robot. Then, the robot was modelled on the Robot Operating System (ROS), using the Unified Robot Description Format (URDF) file and the MoveIt! Setup Assistant. Finally, our controller was tested in the ROS virtual simulation environment. The results show that our controller can facilitate and optimize the design of the path of rehabilitation robot.

Details

Title
A Force/Position Hybrid Controller for Rehabilitation Robot
Author
Jin, Hua; Lile He; Kang, Zhiqiang; Keding Yan
Section
Articles
Publication year
2019
Publication date
Oct 2019
Publisher
Agora University of Oradea
ISSN
18419836
e-ISSN
18419844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2518342900
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.