It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With relevant theories on time series clustering, the thesis makes research into similarity clustering process of time series from the perspective of singularity and proposes the time series clustering based on singularity applying K-means and DBScan clustering algorithms according to the shortage of traditional clustering algorithm. In accordance with the general clustering process of time series, time series clustering based on singularity and K-means are made respectively to get different clustering results and make a comparison, thus proving that similarity clustering research of time series from the perspective of singularity can better find out people's concern on time series.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer