It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Oil spills are a potential hazard, causing the deaths of millions of aquatic animals and this leaves a calamitous effect on the marine ecosystem. This research focuses on evaluating the potential of polarimetric parameters in discriminating the oil slick from water and also possible thicker/thinner zones within the slick. For this purpose, L-band UAVSAR quad-pol data of the Gulf of Mexico region is exploited. A total number of 19 polarimetric parameters are examined to study their behavior and ability in distinguishing oil slick from water and its own less or more oil accumulated zones. The simulation of compact-pol data from UAVSAR quad-pol data is carried out which has shown good performance in detection and discrimination of oil slick from water. To know the extent of separation between oil and water classes, a statistical separability analysis is carried out. The outcomes of each polarimetric parameter from separability analysis are then quantified with the radial basis function (RBF) supervised Support Vector Machine classifier followed with an accurate estimation of the results. Moreover, a comparison of the achieved and estimated accuracy has shown a significant drop in accuracy values. It has been observed that the highest accuracy is given by LHV compact-pol decomposition and coherency matrix with a classification accuracy of ~ 94.09% and ~ 94.60%, respectively. The proposed methodology has performed well in discriminating the oil slick by utilizing UAVSAR dataset for both quad-pol and compact-pol simulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Indian Institute of Remote Sensing (ISRO), Photogrammetry and Remote Sensing Department, Dehradun, India (GRID:grid.466780.b) (ISNI:0000 0001 2225 2071)