Abstract

Identifying structure underlying high-dimensional data is a common challenge across scientific disciplines. We revisit correspondence analysis (CA), a classical method revealing such structures, from a network perspective. We present the poorly-known equivalence of CA to spectral clustering and graph-embedding techniques. We point out a number of complementary interpretations of CA results, other than its traditional interpretation as an ordination technique. These interpretations relate to the structure of the underlying networks. We then discuss an empirical example drawn from ecology, where we apply CA to the global distribution of Carnivora species to show how both the clustering and ordination interpretation can be used to find gradients in clustered data. In the second empirical example, we revisit the economic complexity index as an application of correspondence analysis, and use the different interpretations of the method to shed new light on the empirical results within this literature.

Details

Title
Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
Author
van Dam Alje 1 ; Dekker, Mark 2 ; Morales-Castilla, Ignacio 3 ; Rodríguez, Miguel Á 3 ; Wichmann, David 4 ; Baudena Mara 5 

 Utrecht University, Copernicus Institute of Sustainable Development, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234); Utrecht University, Centre for Complex Systems Studies, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234) 
 Utrecht University, Centre for Complex Systems Studies, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234); Utrecht University, Department of Information and Computing Sciences, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234) 
 University of Alcalá, GloCEE-Global Change Ecology and Evolution Group, Department of Life Sciences, Alcalá, Spain (GRID:grid.7159.a) (ISNI:0000 0004 1937 0239) 
 Utrecht University, Centre for Complex Systems Studies, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234); Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234) 
 Utrecht University, Copernicus Institute of Sustainable Development, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234); Utrecht University, Centre for Complex Systems Studies, Utrecht, The Netherlands (GRID:grid.5477.1) (ISNI:0000000120346234); University of Alcalá, GloCEE-Global Change Ecology and Evolution Group, Department of Life Sciences, Alcalá, Spain (GRID:grid.7159.a) (ISNI:0000 0004 1937 0239); Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Turin, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2518557787
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.