Abstract

With the rapid development of the national economy, the national power consumption level continues to increase, which puts forward higher requirements on the power supply guarantee capacity of the power grid system. The distribution range of the transmission line is wide and densely, most lines are exposed to the unguarded field without any shielding or protective measures, which are vulnerable to man-made destruction or natural disasters. Therefore, it is very important for the early monitoring and prevention of the external force breaking of the transmission lines. The method for preventing external breakage of transmission lines based on deep learning proposed in this paper utilizes the video data collected by the cameras erected on the transmission line roads to perform feature extraction and learning through 3D CNN and LSTM networks, and obtains a monitoring model for external breakage prevention of transmission lines. The model was tested on public data sets and verified that it has a good performance in the field of transmission lines against external damage. The method in this paper makes full use of the existing video acquisition equipment, and the process does not require human intervention, which greatly reduces the cost of line monitoring and the hidden dangers of accidents.

Details

Title
Monitoring Method of Transmission Line Breaking Prevention Based on Deep Learning
Author
Jiang, Yan; Li, Qiang; Wang Guanyao; Wang, Ben; Deng, Wei
Section
Power Control Technology and Smart Grid Application
Publication year
2021
Publication date
2021
Publisher
EDP Sciences
ISSN
25550403
e-ISSN
22671242
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2520168009
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.