It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the rapid development of the national economy, the national power consumption level continues to increase, which puts forward higher requirements on the power supply guarantee capacity of the power grid system. The distribution range of the transmission line is wide and densely, most lines are exposed to the unguarded field without any shielding or protective measures, which are vulnerable to man-made destruction or natural disasters. Therefore, it is very important for the early monitoring and prevention of the external force breaking of the transmission lines. The method for preventing external breakage of transmission lines based on deep learning proposed in this paper utilizes the video data collected by the cameras erected on the transmission line roads to perform feature extraction and learning through 3D CNN and LSTM networks, and obtains a monitoring model for external breakage prevention of transmission lines. The model was tested on public data sets and verified that it has a good performance in the field of transmission lines against external damage. The method in this paper makes full use of the existing video acquisition equipment, and the process does not require human intervention, which greatly reduces the cost of line monitoring and the hidden dangers of accidents.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer