Full text

Turn on search term navigation

Copyright © 2021 Chaoqun Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Industrial wireless sensor networks (IWSNs) are usually fixedly deployed in industrial environments, and various sensor nodes cooperate with each other to complete industrial production tasks. The efficient work of each sensor node of IWSNs will improve the efficiency of the entire network. Automated robots need to perform timely inspection and maintenance of IWSNs in an industrial environment. Excessive inspection distance will increase inspection costs and increase energy consumption. Therefore, shortening the inspection distance can reduce production energy consumption, which is very important for the efficient operation of the entire system. However, the optimal detection path planning of IWSNs is an N-P problem, which can usually only be solved by heuristic mathematical methods. This paper proposes a new adaptive immune ant colony optimization (AIACO) for optimizing automated inspection path planning. Moreover, novel adaptive operator and immune operator are designed to prevent the algorithm from falling into the local optimum and increase the optimization ability. In order to verify the performance of the algorithm, the algorithm is compared with genetic algorithm (GA) and immune clone algorithm (ICA). The simulation results show that the inspection distance of IWSNs using AIACO is lower than that of GA and ICA. In addition, the convergence speed of AIACO is faster than that of GA and ICA. Therefore, the AIACO proposed in this paper can effectively reduce the inspection energy consumption of the entire IWSN system.

Details

Title
An Adaptive Immune Ant Colony Optimization for Reducing Energy Consumption of Automatic Inspection Path Planning in Industrial Wireless Sensor Networks
Author
Li, Chaoqun 1   VIAFID ORCID Logo  ; Xiao, Jing 1 ; Liu, Yang 1 ; Qi, Guohong 1   VIAFID ORCID Logo  ; Hu, Qin 1 ; Zhou, Jie 2   VIAFID ORCID Logo 

 College of Information Science and Technology, Shihezi University, Shihezi, China 
 College of Information Science and Technology, Shihezi University, Shihezi, China; Xinjiang Tianfu Information Technology Co., Ltd., China 
Editor
Mario E Rivero-Angeles
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2520674330
Copyright
Copyright © 2021 Chaoqun Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/