Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electric vehicles are a leading candidate in the clean energy market. This paper aims to analyse the feasibility of the deployment of electric buses (EB) based on the existing bus routes in Brunei, by the use of life cycle cost analysis and the analysis of the parameters that influence the overall life cycle cost. The findings from the study revealed that EB are significantly more expensive than diesel buses (DB), with their acquisition and maintenance costs contributing substantially to their overall life cycle cost. In order to promote EB deployment, the government needs to look simultaneously into providing subsidies for EB and imposing taxes on DB, the provision of charging infrastructure, and ensuring maintenance capability, as well as increasing the current subsidised diesel price. It was also shown that increasing the cost of diesel to the average US diesel price of USD$3.101/L, an initial subsidy of USD$67,586 towards the purchase of EB, and a tax of USD$67,586 for the purchase of DB would allow EB to compete in the market, with the amount of tax and subsidy being gradually reducible over time, as EB and battery technology becomes more mature. From an environmental perspective, the emissions from EB come out higher than the emissions from DB. The efficiency of electric power generation needs to be enhanced, and renewable energy sources and the adoption of carbon capture technology need to be explored in order to exploit the full benefit of EB and ensure more environmentally sustainable bus operation.

Details

Title
Techno-Economic Analysis and Environmental Impact of Electric Buses
Author
Nurizyan, Khairiah Yusof 1 ; Pg Emeroylariffion Abas 1   VIAFID ORCID Logo  ; Mahlia, T M I 2   VIAFID ORCID Logo  ; Hannan, M A 3   VIAFID ORCID Logo 

 Faculty of Integrated Technologies, Universiti Brunei Darussalam Jln. Tungku Link, Darussalam BE1410, Brunei; [email protected] 
 Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia; [email protected] 
 Department of Electrical Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; [email protected] 
First page
31
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20326653
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2521518002
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.