Full text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor with roles in inflammation and tumorigenicity. A fraction of STAT3 localizes in mitochondria, where it augments tumorigenesis via regulation of mitochondrial functions, including modulation of respiration and redox status. We show a novel mechanism for mitochondrial STAT3 regulation of redox homeostasis in triple‐negative breast cancer cells. Loss of STAT3 diminished complex I dehydrogenase activity and impaired NAD+ regeneration, leading to impaired expression of glutathione biosynthetic genes and other antioxidant genes. Expressing mitochondrially restricted STAT3 or replenishment of the cellular NAD pool restored antioxidant gene expression, as did complementation of the NADH dehydrogenase activity by expression of the STAT3‐independent yeast dehydrogenase, NDI1. These NAD‐regulated processes contributed to malignant phenotypes by promoting clonal cell growth and migration. Proximity interaction and protein pull‐down assays identified three components of complex I that associated with mitochondrial STAT3, providing a potential mechanistic basis for how mitochondrial STAT3 affects complex I activity. Our data document a novel mechanism through which mitochondrial STAT3 indirectly controls antioxidant gene regulation through a retrograde NAD+ signal that is modulated by complex I dehydrogenase activity.

Details

Title
Mitochondrial STAT3 regulates antioxidant gene expression through complex I‐derived NAD in triple negative breast cancer
Author
Lahiri, Tanaya 1 ; Brambilla, Lara 1 ; Andrade, Joshua 2 ; Manor Askenazi 3 ; Ueberheide, Beatrix 2 ; Levy, David E 1   VIAFID ORCID Logo 

 Department of Pathology and NYU Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA 
 Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA 
 Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA; Biomedical Hosting LLC, Arlington, MA, USA 
Pages
1432-1449
Section
Research Articles
Publication year
2021
Publication date
May 2021
Publisher
John Wiley & Sons, Inc.
ISSN
15747891
e-ISSN
18780261
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2521806650
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.