It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Radiomic feature analysis has been shown to be effective at analyzing diagnostic images to model cancer outcomes. It has not yet been established how to best combine radiomic features in cancer patients with multifocal tumors. As the number of patients with multifocal metastatic cancer continues to rise, there is a need for improving personalized patient-level prognosis to better inform treatment. We compared six mathematical methods of combining radiomic features of 3,596 tumors in 831 patients with multiple brain metastases and evaluated the performance of these aggregation methods using three survival models: a standard Cox proportional hazards model, a Cox proportional hazards model with LASSO regression, and a random survival forest. Across all three survival models, the weighted average of the largest three metastases had the highest concordance index (95% confidence interval) of 0.627 (0.595–0.661) for the Cox proportional hazards model, 0.628 (0.591–0.666) for the Cox proportional hazards model with LASSO regression, and 0.652 (0.565–0.727) for the random survival forest model. This finding was consistent when evaluating patients with different numbers of brain metastases and different tumor volumes. Radiomic features can be effectively combined to estimate patient-level outcomes in patients with multifocal brain metastases. Future studies are needed to confirm that the volume-weighted average of the largest three tumors is an effective method for combining radiomic features across other imaging modalities and tumor types.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Yale School of Medicine, Department of Therapeutic Radiology, New Haven, USA
2 Massachusetts Institute of Technology, Cambridge, USA
3 Yale College, New Haven, USA
4 Thomas Jefferson University, Department of Neurosurgery, Philadelphia, USA
5 Yale Brain Tumor Center, New Haven, USA
6 Yale School of Medicine, Department of Neurosurgery, New Haven, USA
7 Yale School of Medicine, Department of Therapeutic Radiology, New Haven, USA; Yale Brain Tumor Center, New Haven, USA; Yale School of Medicine, Center for Outcomes Research and Evaluation, New Haven, USA




