Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Knowing which bacteria dominate vaginal microbiota and its variation throughout the cycle is important to study how to prevent reproductive diseases. In women, vaginal microbiota is dominated by Lactobacillus but this does not happen in other animals. Little is known about equine vaginal microbiota. The aim of this study was to describe the dynamics of equine vaginal microbiota during the ovarian cycle. Eight healthy adult Arabian mares were used to characterize vaginal microbiota by standard microbiologic and metagenomic procedures. The abundance of Lactobacillus was < 2% by both methods, meaning that equine vaginal microbiota was not dominated by these bacteria. Dominant bacteria included other genera such as Porphyromonas and Campylobacter among others. No changes in vaginal microbiota composition were found, suggesting that equine vaginal microbiota was stable throughout the ovarian cycle.

Abstract

Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No differences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.

Details

Title
Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Mares
Author
Barba, Marta 1   VIAFID ORCID Logo  ; Martínez-Boví, Rebeca 1   VIAFID ORCID Logo  ; Quereda, Juan José 1   VIAFID ORCID Logo  ; Mocé, María Lorena 1   VIAFID ORCID Logo  ; Plaza-Dávila, María 1 ; Jiménez-Trigos, Estrella 1   VIAFID ORCID Logo  ; Gómez-Martín, Ángel 1 ; González-Torres, Pedro 2 ; Carbonetto, Belén 2 ; García-Roselló, Empar 1   VIAFID ORCID Logo 

 Research Group-Microbiological Agents Associated with Animal Reproduction (ProVaginBio), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; [email protected] (M.B.); [email protected] (R.M.-B.); [email protected] (J.J.Q.); [email protected] (M.L.M.); [email protected] (M.P.-D.); [email protected] (E.J.-T.); [email protected] (Á.G.-M.) 
 Microomics Systems S.L, 08003 Barcelona, Spain; [email protected] (P.G.-T.); [email protected] (B.C.) 
First page
2020
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524377247
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.