It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Disturbed shear stress is thought to be the driving factor of neointimal hyperplasia in blood vessels and grafts, for example in hemodialysis conduits. Despite the common occurrence of neointimal hyperplasia, however, the mechanistic role of shear stress is unclear. This is especially problematic in the context of in situ scaffold-guided vascular regeneration, a process strongly driven by the scaffold mechanical environment. To address this issue, we herein introduce an integrated numerical-experimental approach to reconstruct the graft–host response and interrogate the mechanoregulation in dialysis grafts. Starting from patient data, we numerically analyze the biomechanics at the vein–graft anastomosis of a hemodialysis conduit. Using this biomechanical data, we show in an in vitro vascular growth model that oscillatory shear stress, in the presence of cyclic strain, favors neotissue development by reducing the secretion of remodeling markers by vascular cells and promoting the formation of a dense and disorganized collagen network. These findings identify scaffold-based shielding of cells from oscillatory shear stress as a potential handle to inhibit neointimal hyperplasia in grafts.
van Haaften et al. show numerical-experimental approach to reconstruct the graft–host response. They interrogate the mechanoregulation in dialysis grafts to solve the disturbed shear stress problem, which can be a cause of neointimal hyperplasia in blood vessels and grafts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands (GRID:grid.6852.9) (ISNI:0000 0004 0398 8763); Eindhoven University of Technology, Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands (GRID:grid.6852.9) (ISNI:0000 0004 0398 8763)
2 Maastricht University, Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands (GRID:grid.5012.6) (ISNI:0000 0001 0481 6099)