Abstract

The addition of active, nonlinear, and nonreciprocal functionalities to passive piezoelectric acoustic wave technologies could enable all-acoustic and therefore ultra-compact radiofrequency signal processors. Toward this goal, we present a heterogeneously integrated acoustoelectric material platform consisting of a 50 nm indium gallium arsenide epitaxial semiconductor film in direct contact with a 41° YX lithium niobate piezoelectric substrate. We then demonstrate three of the main components of an all-acoustic radiofrequency signal processor: passive delay line filters, amplifiers, and circulators. Heterogeneous integration allows for simultaneous, independent optimization of the piezoelectric-acoustic and electronic properties, leading to the highest performing surface acoustic wave amplifiers ever developed in terms of gain per unit length and DC power dissipation, as well as the first-ever demonstrated acoustoelectric circulator with an isolation of 46 dB with a pulsed DC bias. Finally, we describe how the remaining components of an all-acoustic radiofrequency signal processor are an extension of this work.

Radio frequency signal processing (RFSP) currently involves a mix of components with differing operation principles, which hinders miniaturisation. Here, Hackett et al. succeed in creating acoustic non-reciprocal circulators, amplifiers, and passive filters, paving the way for all acoustic single-chip RFSP.

Details

Title
Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions
Author
Hackett, Lisa 1 ; Miller, Michael 1 ; Brimigion Felicia 1 ; Dominguez, Daniel 1 ; Peake, Greg 1 ; Tauke-Pedretti Anna 1 ; Arterburn Shawn 1 ; Friedmann, Thomas A 1 ; Eichenfield Matt 1   VIAFID ORCID Logo 

 Sandia National Laboratories, Microsystems Engineering, Science, and Applications, Albuquerque, USA (GRID:grid.474520.0) (ISNI:0000000121519272) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2526475192
Copyright
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.