It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Petroleum refinery wastewater (PRWW) that contains recalcitrant components as the major portion of constituents is difficult to treat by conventional biological processes. An effective and economical biological treatment process was established to treat industrial PRWW with an influent COD of over 2500 mg L−1 in this research. This process is mainly composed of internal circulation biological aerated filter (ICBAF), hydrolysis acidfication (HA), two anaerobic–aerobic (A/O) units, a membrane biological reactor (MBR), and ozone-activated carbon (O3-AC) units. The results showed that, overall, this system removed over 94% of the COD, BOD5, ammonia nitrogen (NH4+-N) and phosphorus in the influent, with the ICBAF unit accounting for 54.6% of COD removal and 83.6% of BOD5 removal, and the two A/O units accounting for 33.3% of COD removal and 9.4% of BOD5 removal. The degradation processes of eight organic pollutants and their removal via treatment were also analyzed. Furthermore, 26 bacteria were identified in this system, with Proteobacteria and Acidobacteria being the most dominant. Ultimately, the treatment process exhibited good performance in degrading complex organic pollutants in the PRWW.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Huizhou University, School of Chemistry and Materials Engineering, Huizhou, People’s Republic of China (GRID:grid.411411.0) (ISNI:0000 0004 0644 5457)
2 CNOOC Huizhou Petrochemical Company, Huizhou, People’s Republic of China (GRID:grid.411411.0)