Full Text

Turn on search term navigation

Copyright © 2021 Dong-ze Qin and Jin-Shi Zhang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

In this study, we propose effective monitoring equipment intended for monitoring the underground tunnel of illegal excavation (such as theft, jailbreak, and smuggling). It mainly detects the microseismic information produced by underground excavation in a short distance to detect the status of underground excavation. Based on the arrival time difference principle, the positioning mathematical models of the 5-1-1 layout method, 4-3 layout method, and 7-0-0 layout method are established, respectively. In the research process, the measurement and the placement error caused by the installation of a seismic detector are joined into the detectors. Simulation results show that the relative error and its average value are obtained when mining outside the monitoring area. The experiment results demonstrate that, first, the depth positioning error is positively affected by the number of seismic detectors. Then, the relative error of plane positioning can be reduced when the installation distance among detectors is increased. Finally, the main causes of location error include time measurement error, propagation velocity difference caused by terrain, and the performance of detector hardware. The array of a ground motion detector has a weak influence on it. These emerging trends will have profound impacts on application of an underground excavation system.

Details

Title
Layout Method of Multiseismic Detectors for Shallow Underground Excavation Applications
Author
Dong-ze Qin 1   VIAFID ORCID Logo  ; Jin-Shi, Zhang 1 

 School of Mechatronic Engineering, North University of China, Taiyuan 030051, China 
Editor
Jesús Lozano
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2527977112
Copyright
Copyright © 2021 Dong-ze Qin and Jin-Shi Zhang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/