Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To construct a large-scale service knowledge graph is necessary. We propose a method, namely semantic information extension, for service knowledge graphs. We insist on the information of services described by Web Services Description Language (WSDL) and we design the ontology layer of web service knowledge graph and construct the service graph, and using the WSDL document data set, the generated service knowledge graph contains 3738 service entities. In particular, our method can give a full performance to its effect in service discovery. To evaluate our approach, we conducted two sets of experiments to explore the relationship between services and classify services that develop by service descriptions. We constructed two experimental data sets, then designed and trained two different deep neural networks for the two tasks to extract the semantics of the natural language used in the service discovery task. In the prediction task of exploring the relationship between services, the prediction accuracy rate reached 95.1%, and in the service classification experiment, the accuracy rate of TOP5 reached 60.8%. Our experience shows that the service knowledge graph has additional advantages over traditional file storage when managing additional semantic information is effective and the new service representation method is helpful for service discovery and composition tasks.

Details

Title
A Framework for Service Semantic Description Based on Knowledge Graph
Author
Sun, Qitong; Ma, Dianfu
First page
1017
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528258315
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.