Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The problem of the optimal operation of battery energy storage systems (BESSs) in AC grids is addressed in this paper from the point of view of multi-objective optimization. A nonlinear programming (NLP) model is presented to minimize the total emissions of contaminant gasses to the atmosphere and costs of daily energy losses simultaneously, considering the AC grid complete model. The BESSs are modeled with their linear relation between the state-of-charge and the active power injection/absorption. The Pareto front for the multi-objective optimization NLP model is reached through the general algebraic modeling system, i.e., GAMS, implementing the pondered optimization approach using weighting factors for each objective function. Numerical results in the IEEE 33-bus and IEEE 69-node test feeders demonstrate the multi-objective nature of this optimization problem and the multiple possibilities that allow the grid operators to carry out an efficient operation of their distribution networks when BESS and renewable energy resources are introduced.

Details

Title
Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS
Author
Molina-Martin, Federico 1 ; Montoya, Oscar Danilo 2   VIAFID ORCID Logo  ; Grisales-Noreña, Luis Fernando 3   VIAFID ORCID Logo  ; Hernández, Jesus C 4   VIAFID ORCID Logo  ; Ramírez-Vanegas, Carlos A 5 

 Departamento de Ingeniería Eléctrica, Campus Lagunillas s/n, University of Jaén, Edificio A3, 23071 Jaén, Spain; [email protected] 
 Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 11021, Colombia; [email protected]; Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia 
 Grupo GIIEN, Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Campus Robledo, Medellín 050036, Colombia; [email protected] 
 Department of Electrical Engineering, Campus Lagunillas s/n, University of Jaén, Edificio A3, 23071 Jaén, Spain 
 Facultad de Ciencias Básicas, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; [email protected] 
First page
1002
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528258680
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.