Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The assisted assembly of customized products supported by collaborative robots combined with mixed reality devices is the current trend in the Industry 4.0 concept. This article introduces an experimental work cell with the implementation of the assisted assembly process for customized cam switches as a case study. The research is aimed to design a methodology for this complex task with full digitalization and transformation data to digital twin models from all vision systems. Recognition of position and orientation of assembled parts during manual assembly are marked and checked by convolutional neural network (CNN) model. Training of CNN was based on a new approach using virtual training samples with single shot detection and instance segmentation. The trained CNN model was transferred to an embedded artificial processing unit with a high-resolution camera sensor. The embedded device redistributes data with parts detected position and orientation into mixed reality devices and collaborative robot. This approach to assisted assembly using mixed reality, collaborative robot, vision systems, and CNN models can significantly decrease assembly and training time in real production.

Details

Title
CNN Training Using 3D Virtual Models for Assisted Assembly with Mixed Reality and Collaborative Robots
Author
Židek, Kamil  VIAFID ORCID Logo  ; Balog, Michal  VIAFID ORCID Logo  ; Hošovský, Alexander; Hladký, Vratislav; Lazorík, Peter; Iakovets, Angelina; Demčák, Jakub
First page
4269
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528274437
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.